数据可视化实例分析 作者:白宁超 2017年7月19日09:09:07 摘要:数据可视化主要旨在借助于图形化手段,清晰有效地传达与沟通信息.但是,这并不就意味着数据可视化就一定因为要实现其功能用途而令人感到枯燥乏味,或者是为了看上去绚丽多彩而显得极端复杂.为了有效地传达思想概念,美学形式与功能需要齐头并进,通过直观地传达关键的方面与特征,从而实现对于相当稀疏而又复杂的数据集的深入洞察.然而,设计人员往往并不能很好地把握设计与功能之间的平衡,从而创造出华而不实的数据可视化形式,无法达到其主要目的,…
原文:C语言库函数大全及应用实例十四                                       [编程资料]C语言库函数大全及应用实例十四 函数名: strset 功 能: 将一个串中的所有字符都设为指定字符 用 法: char *strset(char *str, char c); 程序例: #i nclude #i nclude int main(void) { char string[10] = "123456789"; char symbol = 'c'; p…
偏差 (Deviation) 面积图 (Area Chart) 通过对轴和线之间的区域进行着色,面积图不仅强调峰和谷,而且还强调高点和低点的持续时间. 高点持续时间越长,线下面积越大. https://datawhalechina.github.io/pms50/#/chapter14/chapter14 导入所需要的库 import numpy as np # 导入numpy库 import pandas as pd # 导入pandas库 import matplotlib as mpl #…
排序 (Ranking) 包点图 (Dot Plot) 包点图表传达了项目的排名顺序,并且由于它沿水平轴对齐,因此您可以更容易地看到点彼此之间的距离. https://datawhalechina.github.io/pms50/#/chapter17/chapter17 导入所需要的库 import numpy as np # 导入numpy库 import pandas as pd # 导入pandas库 import matplotlib as mpl # 导入matplotlib库 im…
排序 (Ranking) 棒棒糖图 (Lollipop Chart) 棒棒糖图表以一种视觉上令人愉悦的方式提供与有序条形图类似的目的. https://datawhalechina.github.io/pms50/#/chapter16/chapter16 导入所需要的库 import numpy as np # 导入numpy库 import pandas as pd # 导入pandas库 import matplotlib as mpl # 导入matplotlib库 import mat…
1.数据概览 第一步当然是把缺失的数据找出来, Pandas 找缺失数据可以使用 info() 这个方法(这里选用的数据源还是前面一篇文章所使用的 Excel ,小编这里简单的随机删除掉几个数据) import pandas as pd # 相对路径 df = pd.read_excel("result_data.xlsx") print(df) # 输出结果 plantform read_num fans_num rank_num like_num create_date 0 cnb…
偏差 (Deviation) 带标记的发散型棒棒糖图 (Diverging Lollipop Chart with Markers) 带标记的棒棒糖图通过强调您想要引起注意的任何重要数据点并在图表中适当地给出推理,提供了一种对差异进行可视化的灵活方式. https://datawhalechina.github.io/pms50/#/chapter13/chapter13 导入所需要的库 import numpy as np # 导入numpy库 import pandas as pd # 导入…
https://datawhalechina.github.io/pms50/#/chapter10/chapter10 如果您想根据单个指标查看项目的变化情况,并可视化此差异的顺序和数量,那么散型条形图 (Diverging Bars) 是一个很好的工具. 它有助于快速区分数据中组的性能,并且非常直观,并且可以立即传达这一点. 导入所需要的库 import numpy as np # 导入numpy库 import pandas as pd # 导入pandas库 import matplot…
矩阵图 https://datawhalechina.github.io/pms50/#/chapter9/chapter9 导入所需要的库 import numpy as np # 导入numpy库 import pandas as pd # 导入pandas库 import matplotlib as mpl # 导入matplotlib库 import matplotlib.pyplot as plt import seaborn as sns # 导入seaborn库 %matplotl…
相关图 https://datawhalechina.github.io/pms50/#/chapter8/chapter8 导入所需要的库 import numpy as np # 导入numpy库 import pandas as pd # 导入pandas库 import matplotlib as mpl # 导入matplotlib库 import matplotlib.pyplot as plt import seaborn as sns # 导入seaborn库 %matplotl…