Hive Sql的窗口函数】的更多相关文章

date: 2019-08-30 11:02:37 updated: 2019-08-30 14:40:00 Hive Sql的窗口函数 1. count.sum.avg.max.min 以 sum 为例 # 按照 year 来分组,统计每一年的总和 # 结果:每个月的值都是本年的总和 sum(val) over(partition by year) # 按照 year 来分组,按照 month 来排序 # 结果:n 月的值是本年 1 - n 月的累计值 sum(val) over(partit…
简介 本文主要介绍hive中的窗口函数.hive中的窗口函数和sql中的窗口函数相类似,都是用来做一些数据分析类的工作,一般用于olap分析 概念 我们都知道在sql中有一类函数叫做聚合函数,例如sum().avg().max()等等,这类函数可以将多行数据按照规则聚集为一行,一般来讲聚集后的行数是要少于聚集前的行数的.但是有时我们想要既显示聚集前的数据,又要显示聚集后的数据,这时我们便引入了窗口函数. 在深入研究Over字句之前,一定要注意:在SQL处理中,窗口函数都是最后一步执行,而且仅位于…
date: 2019-03-22 17:02:37 updated: 2020-04-08 16:00:00 Hive Sql的日常使用笔记 1. distinct 和 group by distinct 只能返回去重的列 group by 理论上是需要在 select 后面配合聚合函数(sum, avg, max, min, count)来使用的 select 后面没有在聚合函数中的列都需要写在 group by 的后面,eg: select A1, A2, A3, max(B) from t…
本文整体分为两部分,第一部分是简写,如果能看懂会用,就直接从此部分查,方便快捷,如果不是很理解此SQL的用法,则查看第二部分,是详细说明,当然第二部分语句也会更全一些! 第一部分: hive模糊搜索表:show tables like '*name*'; 查看表结构信息:desc table_name; 查看分区信息:show partitions table_name; 加载本地文件:load data local inpath '/xxx/test.txt' overwrite into t…
目录 一.定义 窗口函数: 标准聚合函数 分析排名函数 二.语法 (1)窗口函数 over([partition by 字段] [order by 字段] [ 窗口语句]) (2)窗口语句 三.需求练习一 需求说明 数据准备 count,sum 需求1 需求2 lag,lead 需求3 需求4 first_value,last_value 需求5 四.需求练习二 需求说明 数据准备 rank,dense_rank,row_number 需求1 ntile 需求2 一.定义 官网介绍:https:…
Hive 是基于Hadoop 构建的一套数据仓库分析系统,它提供了丰富的SQL查询方式来分析存储在Hadoop 分布式文件系统中的数据,可以将结构 化的数据文件映射为一张数据库表,并提供完整的SQL查询功能,可以将SQL语句转换为MapReduce任务进行运行,通过自己的SQL 去查询分析需 要的内容,这套SQL 简称Hive SQL,使不熟悉mapreduce 的用户很方便的利用SQL 语言查询,汇总,分析数据.而mapreduce开发人员可以把 己写的mapper 和reducer 作为插件…
1.概述 在开发工作当中,提交 Hadoop 任务,任务的运行详情,这是我们所关心的,当业务并不复杂的时候,我们可以使用 Hadoop 提供的命令工具去管理 YARN 中的任务.在编写 Hive SQL 的时候,需要在 Hive 终端,编写 SQL 语句,来观察 MapReduce 的运行情况,长此以往,感觉非常的不便.另外随着业务的复杂化,任务的数量增加,此时我们在使用这套流程,已预感到力不从心,这时候 Hive 的监控系统此刻便尤为显得重要,我们需要观察 Hive SQL 的 MapRedu…
Hive 是基于Hadoop 构建的一套数据仓库分析系统,它提供了丰富的SQL查询方式来分析存储在Hadoop 分布式文件系统中的数据,可以将结构 化的数据文件映射为一张数据库表,并提供完整的SQL查询功能,可以将SQL语句转换为MapReduce任务进行运行,通过自己的SQL 去查询分析需 要的内容,这套SQL 简称Hive SQL,使不熟悉mapreduce 的用户很方便的利用SQL 语言查询,汇总,分析数据.而mapreduce开发人员可以把 己写的mapper 和reducer 作为插件…
一. 创建表 在官方的wiki里,example是这种: Sql代码   CREATE [EXTERNAL] TABLE [IF NOT EXISTS] table_name [(col_name data_type [COMMENT col_comment], ...)] [COMMENT table_comment] [PARTITIONED BY (col_name data_type [COMMENT col_comment], ...)] [CLUSTERED BY (col_name…
相对于使用MapReduce或者Spark Application的方式进行数据分析,使用Hive SQL或Spark SQL能为我们省去不少的代码工作量,而Hive SQL或Spark SQL本身内置的各类UDF也为我们的数据处理提供了不少便利的工具,当这些内置的UDF不能满足于我们的需要时,Hive SQL或Spark SQL还为我们提供了自定义UDF的相关接口,方便我们根据自己的需求进行扩展.   在Hive的世界里使用自定义UDF的过程是比较复杂的.我们需要根据需求使用Java语言开发相…