机器学习中的数学 觉得有用的话,欢迎一起讨论相互学习~Follow Me 原创文章,如需转载请保留出处 本博客为七月在线邹博老师机器学习数学课程学习笔记 Taylor 展式与拟牛顿 索引 taylor展式 计算函数值 解释gini系数公式 平方根公式 牛顿法 梯度下降算法 拟牛顿法 DFP BFGS Taylor公式 如果函数在x0点可以计算n阶导数,则有Taylor展开 如果取x0=0,则有Taylor的麦克劳林公式. Taylor公式的应用1:函数值计算 计算\(e^{x}\) 则我们现在的…
机器学习中的数学 觉得有用的话,欢迎一起讨论相互学习~Follow Me 原创文章,如需转载请保留出处 本博客为七月在线邹博老师机器学习数学课程学习笔记 索引 微积分,梯度和Jensen不等式 Taylor展开及其应用 常见概率分布和推导 指数族分布 共轭分布 统计量 矩估计和最大似然估计 区间估计 Jacobi矩阵 矩阵乘法 矩阵分解RQ和SVD 对称矩阵 凸优化 微积分与梯度 常数e的计算过程 常见函数的导数 分部积分法及其应用 梯度 上升/下降最快方向 凸函数 Jensen不等式 自然常数…
机器学习中的数学 觉得有用的话,欢迎一起讨论相互学习~Follow Me 原创文章,如需转载请保留出处 本博客为七月在线邹博老师机器学习数学课程学习笔记 矩 对于随机变量X,X的K阶原点矩为 \[E(X^{k})\] X的K阶中心矩为 \[E([X-E(X)]^{k})\] 期望实际上是随机变量X的1阶原点矩,方差实际上是随机变量X的2阶中心矩 变异系数(Coefficient of Variation):标准差与均值(期望)的比值称为变异系数,记为C.V 偏度Skewness(三阶) 峰度Ku…
$argmin_xf(x), min(f(x))$ $min(f(x))$的意思是函数$f(x)$的最小值 $argmin$的意思是返回使得表达式取得最小值时对应的输入变量值.例如$argmin_xf(x)$等于当$f(x)$取得最小值时对应的x值. 下面的例子中$min(f(x))=-2, argmin_x(f(x))=4.9$ $\textrm{if }k=\arg\min_j\left\Vert\mathbf x_n-\mu_j\right\Vert^2$ 完整的符号如下: $$\pi_n…
function sevnn x=[1,0]'; [x,val]=dfp('fun','gfun',x) end function f=fun(x) f=100*(x(1)^2-x(2))^2+(x(1)-1)^2; end function g=gfun(x) g=[400*x(1)*(x(1)^2-x(2))+2*(x(1)-1), -200*(x(1)^2-x(2))]'; end function He=Hess(x) He=[1200*x(1)^2-400*x(2)+2, -400*x…
数据.特征和数值优化算法是机器学习的核心,而牛顿法及其改良(拟牛顿法)是机器最常用的一类数字优化算法,今天就从牛顿法开始,介绍几个拟牛顿法算法.本博文只介绍算法的思想,具体的数学推导过程不做介绍. 1. 牛顿法 牛顿法的核心思想是”利用函数在当前点的一阶导数,以及二阶导数,寻找搜寻方向“(回想一下更简单的梯度下降法,她只用了当前点一阶导数信息决定搜索方向). 牛顿法的迭代公式是(稍微有修改,最原始的牛顿法\(\gamma=1\): \[{{\bf{x}}_{n + 1}} = {{\bf{x}}…
提升的概念 提升是一个机器学习技术,可以用于回归和分类问题,它每一步产生一个弱预测模型(如决策树),并加权累加到总模型中:如果每一步的弱预测模型生成都是依据损失函数的梯度方向,则称之为梯度提升(Gradient boosting) 梯度提升算法首先给定一个目标损失函数,它的定义域是所有可行的若函数集合(基函数):提升算法通过迭代的选择一个负梯度方向上的基函数来逐渐逼近局部极小值.这种在函数域的梯度提升观点对机器学习的很多领域有深刻的影响. 提升的理论意义:如果一个问题存在弱分类器,则可以通过提升…
转自:http://www.math.org.cn/forum.php?mod=viewthread&tid=14819&extra=&page=1 原作者: wcboy 现在的论坛质量比以前差了,大部分都是来解题问答的,而且层次较低.以前论坛中,Qullien很令人印象深刻,但愿他能在国外闯出一片天空.现在 基础数学版代数&数论子版中那几个讨论代数几何的还不错.不期望目前论坛出现很多高层次高手,高层次高手应该站在好课题上高观点讨论数学,出 现这样的网友,看他们的言论非常过…
0.随机森林的思考 随机森林的决策树是分别采样建立的,各个决策树之间是相对独立的.那么,在我们得到了第k-1棵决策树之后,能否通过现有的样本和决策树的信息, 对第m颗树的建立产生有益的影响呢?在随机森林建立之后,采用的投票过程能否增加一定的权值呢?在选取样本的时候,我们能否对于分类错误的样本给予更大的权值,使之得到更多的重视呢? 1.什么是提升思想 提升是一个机器学习技术,可以用于回归和分类问题,它每一步产生一个弱预测模型,并加权累加到总的模型之中,如果每一步的弱预测模型生成都是依据损失函数的梯…
1. Boosting算法基本思路 提升方法思路:对于一个复杂的问题,将多个专家的判断进行适当的综合所得出的判断,要比任何一个专家单独判断好.每一步产生一个弱预测模型(如决策树),并加权累加到总模型中,可以用于回归和分类问题:如果每一步的弱预测模型生成都是依据损失函数的梯度方向,则称之为梯度提升(Gradient boosting). 梯度提升算法首先给定一个目标损失函数,它的定义域是所有可行的弱函数集合(基函数):提升算法通过迭代的选择一个负梯度方向上的基函数来逐渐逼近局部极小值.这种在函数域…