KITTI数据集提供了双目图像,激光数据,和imu/gps位置信息,其中还包括了大量的算法.下载地址为:http://www.cvlibs.net/datasets/kitti/raw_data.php 例如一个153帧的序列,其中图像: 激光数据: 车体位置信息: 以及各个传感器的标定数据: 还包括各种语言的接口文件:…
KITTI数据集接口已经提供了matlab接口,本篇将说明详细说明其应用并与PCL进行对接.PCL为C++点云处理语言库,详情可见:http://pointclouds.org/ 程序可以从官网下载,也可以从我的github上下载https://github.com/ZouCheng321/fusion_kitti,为运行本代码,必须先编译make.m文件. 关于激光相机的demo为 run_demoVelodyne.m 本例以读取 2011_09_26_drive_0005_sync场景,读取…
这一节将用ROS+Gazebo 环境获取激光获取点云,并用PCL和OPENCV处理,源代码在:https://github.com/ZouCheng321/5_laser_camera_sim 由于激光的视角远大于相机,所以我们使用了5个相机来获取图像,这类似于Ladybug相机: 相机获取的五张图像: 接下来我们用来构建彩色点云: 相机与激光的位置变换,由于是正五边形分别,这很容易求得: Eigen::Matrix4f rt0,rt1,rt2,rt3,rt4; rt0<< ,,-,, ,,,…
目录 目的 如何实现 kitti数据集简介 kitti数据集的raw_data 利用kitti提供的devkit以及相应数据集的calib文件 解读calib文件夹 解读devkit 目的 使用雷达点云提供的深度信息 如何实现 将雷达的三维点云投影到相机的二维图像上 kitti数据集简介 kitti的数据采集平台,配置有四个摄像机和一个激光雷达,四个摄像机中有两个灰度摄像机,两个彩色摄像机. 从图中可看出,关于相机坐标系(camera)的方向与雷达坐标系(velodyne)的方向规定: ​ ca…
1.kitti数据采集平台 KITTI数据集的数据采集平台装配有2个灰度摄像机,2个彩色摄像机,一个Velodyne64线3D激光雷达,4个光学镜头,以及1个GPS导航系统.图示为传感器的配置平面图,为了生成双目立体图像,相同类型的摄像头相距54cm安装.由于彩色摄像机的分辨率和对比度不够好,所以还使用了两个立体灰度摄像机,它和彩色摄像机相距6cm安装.(模拟双目摄像机?) 2.kitti 激光雷达.摄像头数据融合: 要将Velodyne坐标中的点x投影到左侧的彩色图像中y: 使用公式:y =…
由于上一篇博客所提到的论文中的训练数据是KITTI的数据集,因此如果我想要用自己的数据集进行训练的话,就需要先弄清楚KITTI数据集的格式,在以下的网址找到了说明: 首先,数据描述中是这样的: 在以下的网址中有具体每个维度所代表的意义的说明: https://github.com/NVIDIA/DIGITS/blob/v4.0.0-rc.3/digits/extensions/data/objectDetection/README.md 那么接下来就是将自己的训练数据集转成上述的格式,然后用自己…
1.KITTI数据集采集平台: KITTI数据采集平台包括2个灰度摄像机,2个彩色摄像机,一个Velodyne 3D激光雷达,4个光学镜头,以及1个GPS导航系统.坐标系转换原理参见click.KITTI提供的数据中都包含三者的标定文件,不需人工转换. 2.KITTI数据集,label文件解析: Car 0.00 0 -1.84 662.20 185.85 690.21 205.03 1.48 1.36 3.51 5.35 2.56 58.84 -1.75 第1个字符串:代表物体类别 'Car'…
目的 使用雷达点云提供的深度信息 如何实现 将雷达的三维点云投影到相机的二维图像上 kitti数据集简介 kitti的数据采集平台,配置有四个摄像机和一个激光雷达,四个摄像机中有两个灰度摄像机,两个彩色摄像机. 从图中可看出,关于相机坐标系(camera)的方向与雷达坐标系(velodyne)的方向规定: ​ camera:  x = right, y = down, z = forward velodyne: x = forward, y = left, z = up 那么velodyne所采…
人工智能大数据,公开的海量数据集下载,ImageNet数据集下载,数据挖掘机器学习数据集下载 ImageNet挑战赛中超越人类的计算机视觉系统微软亚洲研究院视觉计算组基于深度卷积神经网络(CNN)的计算机视觉系统,在ImageNet 1000挑战中首次超越了人类进行对象识别分类的能力.他们的系统在ImageNet 2012分类数据集中的错误率已降低至4.94%.这个数据集包含约120万张训练图像.5万张验证图像和10万张测试图像,分为1000个不同的类别.该研究团队由微软亚洲研究院研究员孙剑.何…
原文:SSAS系列--[03]多维数据(多维数据集对象) 1.什么是Cube? 简单 Cube 对象由基本信息.维度和度量值组组成. 基本信息包括多维数据集的名称.多维数据集的默认度量值.数据源和存储模式等.维度是多维数据集中使用的实际维度组.所有维度都必须先在数据库的维度集合中定义,然后才能在多维数据集中引用.度量值组是多维数据集中的度量值集.度量值组是具有常见数据源视图和维度集的度量值的集合.度量值组是度量值的处理单元:可先对度量值组进行单独处理,然后再浏览.这个概念MSND解释的非常清楚,…