点/边 双连通分量---Tarjan算法】的更多相关文章

运用Tarjan算法,求解图的点/边双连通分量. 1.点双连通分量[块] 割点可以存在多个块中,每个块包含当前节点u,分量以边的形式输出比较有意义. typedef struct{ //栈结点结构 保存边 int front; int rear; }BNode; BNode block_edge[MAXL]; int top; //栈指针,指向下一个空位 int num_block; //块计数 int b1,b2; //存储块中的边 辅助信息[全局变量] void add(int *top,i…
原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ30.html 题目传送门 - UOJ#30 题意 uoj写的很简洁.清晰,这里就不抄一遍了. 题解 首先建出圆方树.接下来,我们称"圆点"为原来有的点,"方点"为新增的点. 然后先只考虑在线询问如何做. ——把方点的值设置成所有与他连边的圆点的权值的最小值,直接在圆方树上树链剖分再套个线段树支持一下区间询问即可. 然后会发现这样做支持不了修改操作. ——直接来个菊花图不断修…
/** 题目大意: 给你一个无向连通图,问加上一条边后得到的图的最少的割边数; 算法思想: 图的边双连通Tarjan算法+树形DP; 即通过Tarjan算法对边双连通缩图,构成一棵树,然后用树形DP求最长链,连接首尾即可;剩下的连通块即为所求答案; 算法思路: 对图深度优先搜索,定义DFN(u)为u在搜索树中被遍历到的次序号; 定义Low(u)为u或u的子树中能通过非父子边追溯到的最早的节点,即DFN序号最小的节点; 则有: Low(u)=Min { DFN(u), Low(v),(u,v)为树…
引子 果然老师们都只看标签拉题... 2020.8.19新初二的题集中出现了一道题目(现已除名),叫做Running In The Sky. OJ上叫绮丽的天空 发现需要处理环,然后通过一些神奇的渠道了解到有个东西叫缩点. 紧接着搜了一下缩点,发现了 Tarjan 算法. 然后又翻了翻算法竞赛,于是一去不复返-- 一些定义 给定一张有向图.对于图中任意两个节点 \(x, y\),存在从 \(x\) 到 \(y\) 的路径,也存在 \(y\) 到 \(x\) 的路径.则称该有向图为"强连通图&qu…
Tarjan算法应用 (割点/桥/缩点/强连通分量/双连通分量/LCA(最近公共祖先)问题)(转载) 转载自:http://hi.baidu.com/lydrainbowcat/blog/item/2194090a96bbed2db1351de8.html 基本概念: 1.割点:若删掉某点后,原连通图分裂为多个子图,则称该点为割点. 2.割点集合:在一个无向连通图中,如果有一个顶点集合,删除这个顶点集合,以及这个集合中所有顶点相关联的边以后,原图变成多个连通块,就称这个点集为割点集合. 3.点连…
图论算法-Tarjan模板 [缩点:割顶:双连通分量] 为小伙伴们总结的Tarjan三大算法 Tarjan缩点(求强连通分量) int n; int low[100010],dfn[100010]; bool ins[100010]; int col[100010];//记录每个点所属强连通分量(即染色) vector<int> map[100010]; stack<int> st; int tot;//时间戳 int colnum;//记录强连通分量个数 void tarjan(…
接上一节Tarjan算法初探(2):缩点 在此首先提出几个概念: 割点集合:一个无向连通图G 若删除它的一个点集 以及点集中所有点相连的边(任意一端在点集中)后 G中有点之间不再连通则称这个点集是它的一个割点集合 割边集合:一个无向连通图G 若删除它的一个边集 G中有点之间不再连通则称这个边集是它的一个割边集合 图的点联通度:无向连通图的最小割点集合中元素的个数是一张无向连通图的点连通度 图的边联通度:无向连通图的最小割边集合中元素的个数是一张无向连通图的边联通度 割点:如果一个无向连通图的点连…
基本概念 给定无向连通图G = (V, E)割点:对于x∈V,从图中删去节点x以及所有与x关联的边之后,G分裂为两个或两个以上不相连的子图,则称x为割点割边(桥)若对于e∈E,从图中删去边e之后,G分裂成两个不相连的子图,则称e为G的桥或割边 时间戳在图的深度优先遍历过程中,按照每个节点第一次被访问的时间顺序,依次给予N个节点1~N的整数标记,该标记被称为“时间戳”,记为dfn[x] 搜索树在无向连通图中任选一个节点出发进行深度优先遍历吗,每个节点只访问一次.所有发生递归的边(x, y)构成一棵…
 http://blog.csdn.net/geniusluzh/article/details/6619575 在说Tarjan算法解决桥和边双连通分量问题之前我们先来回顾一下Tarjan算法是如何求解强连通分量的. Tarjan算法在求解强连通分量的时候,通过引入dfs过程中对一个点访问的顺序dfsNum(也就是在访问该点之前已经访问的点的个数)和一个点可以到达的最小的dfsNum的low数组,当我们遇到一个顶点的dfsNum值等于low值,那么该点就是一个强连通分量的根.因为我们在dfs的…
这篇介绍如何用Tarjan算法求Double Connected Component,即双连通分量. 双联通分量包括点双连通分量v-DCC和边连通分量e-DCC. 若一张无向连通图不存在割点,则称它为“点双连通图”,不存在桥则称为“边双连通图”. 无向图的极大点双连通子图就v-DCC,极大边双连通子图就是e-DCC. 上一篇我们讲了如何用Tarjan算法求出无向图中的所有割点和桥. 不会求的朋友们可以去看一看上篇文章:Tarjan算法求无向图的割点和桥 这里“极大”的定义可以理解为包含部分点的最…