day6 角点检测】的更多相关文章

1.Harris角点检测 # coding=utf-8 import cv2 import numpy as np filename = 'pic5.png' #1.读入一个灰度图像 img = cv2.imread(filename) gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) cv2.imshow('gray',gray) #2.执行角点检测函数 gray = np.float32(gray) dst = cv2.cornerHarris(gray…
Harris通过运用微分运算和自相关矩阵改进了Moravec角点检测算法.用微分算子重新定义灰度强度变化的公式,其灰度强度变化表示为: 式中的wu,v为高斯窗口在(u,v)处的系数.X,Y它们是像素点在X方向和Y方向的一阶梯度,反映图像中每个像素点的灰度变化方向,,若像素点(x,y)在两个方向灰度都发生足够大的变化则提取为角点. 选取高斯函数为检测窗口,对图像进行平滑滤波再提取角点,对噪声有较好的抑制作用. 式中的矩阵定义为像素点(x, y)的自相关矩阵为,设K1,K2分别是矩阵M的两个特征值,…
Harris角点检测算法优化 一.综述 用 Harris 算法进行检测,有三点不足:(1 )该算法不具有尺度不变性:(2 )该算法提取的角点是像素级的:(3 )该算法检测时间不是很令人满意. 基于以上认识,我主要针对第(3 )点对Harris 角点检测算法提出了改进. 二.改进 Harris 算法原理 在介绍我的方法之前,我先提出如下概念:图像区域像素的相似度.我们知道, Harris 角点检测是基于图像像素灰度值变化梯度的, 灰度值图像的角点附近,是其像素灰度值变化非常大的区域,其梯度也非常大…
代码示例: #include <opencv2/highgui/highgui.hpp> #include <opencv2/imgproc/imgproc.hpp> #include<iostream> #include<vector> using namespace cv; using namespace std; #define WINDOW_NAME "Shi-Tomasi角点检测" Mat src, gray; ; ; RNG…
代码示例一: #include<opencv2/opencv.hpp> using namespace cv; int main(){ Mat src = imread(); imshow("原始图", src); //进行Harris角点检测找出角点 Mat cornerStrength; cornerHarris(src, cornerStrength, , , 0.01); //对灰度图进行阈值操作,得到二值图并显示 Mat harrisCorner; thresho…
time:2015年10月09日 星期五 23时11分58秒 # opencv笔记6:角点检测 update:从角点检测,学习图像的特征,这是后续图像跟踪.图像匹配的基础. 角点检测是什么鬼?前面一篇学习笔记是各种模板操作,是图像增强技术. 那么我节写来应该继续找下有没有别的图像增强技术. 但是,我对增强还不是特别理解. 图像增强:划定ROI区域,然后想方设法将感兴趣的特征有选择的突出.注意,这可是不去考虑图像质量下降的原因的. 图像恢复:针对图像降质的原因,设法去补偿降质因素,从而使改善后的图…
一 .Motivation 对于做图像处理的人来说,Harris角点检测肯定听过,1988年发表的文章"A combined corner and edge detector"描述了这种角点检测方法,这篇论文朴实无华,对于图像处理入门来说,非常值得读一读. Harris角点检测的提出是图像匹配问题的需求,在立体视觉(stereo vision)和运动估计(motion estimation)中,常常需要在两个view(立体视觉)或者同一视频的两帧(运动估计)中找到对应的特征(corre…
主要参考了:http://blog.csdn.net/yudingjun0611/article/details/7991601  Harris角点检测算子 本文将该文拷贝了过来,并做了一些数学方面的补充,以方便对数学已经生疏的小伙伴们参考理解.由于补充的内容还挺多,所以还是将本文标注为了原创. 我增加的部分在文中用 {{  }} 圈了起来并用红色字体标注. 正文开始. Harris角点检测算子是于1988年由CHris Harris & Mike Stephens提出来的.在具体展开之前,不得…
1.原理 Difference of Gaussian(DOG)是高斯函数的差分.将两幅图像在不同参数下的高斯滤波结果相减,得到DoG图.步骤: 处理一幅图像在不同高斯参数下的DoG 用两个不同的5x5高斯核对图像进行卷积,然后再相减的操作.重复三次得到三个差分图A,B,C. 根据DoG求角点 计算出的A,B,C三个DOG图中求图B中是极值的点.图B的点在当前由A,B,C共27个点组成的block中是否为极大值或者极小值.若满足此条件则认为是角点. 2.实现细节 2.1 差分得到DoG图 Mat…
角点检测是计算机视觉系统中用来获取图像特征的一种方法.我们都常说,这幅图像很有特点,但是一问他到底有哪些特点,或者这幅图有哪些特征可以让你一下子就识别出该物体,你可能就说不出来了.其实说图像的特征,你可以尝试说一下这幅图有几个矩形啊几个圆形啊,有几条直线啊,当然啦,你也可以说一下有几个角点. 什么是角点? 角点通常被定义为两条边的交点.比如,三角形有三个角,矩形有四个角,这些就是角点,也是他们叫做矩形.三角形的特征,我们看到一些几何图形具有三个角,那么我们便可以脱口而出说这是一个三角形. 上面所…