【BZOJ4553】[HAOI2016&TJOI2016]序列】的更多相关文章

[BZOJ4553][HAOI2016&TJOI2016]序列 题面 bzoj 洛谷 题解 一定要仔细看题啊qwq... 我们设$mn[i],mx[i]$表示第$i$个位置上最小出现.最大出现的值. 则选出的序列要满足 $ i<j\\ a[i]\leq mn[j]\\ mx[i]\leq a[j] $ 这™不就是个三维偏序吗? 一边$CDQ$一边$dp$就好了 注意分治时注意清空 这题的一个变式 代码 #include <iostream> #include <cstdio…
传送门 好像是DP再套个裸的CDQ? 树套树是不可能写树套树的,这辈子都不可能写树套树的 对于一个 \(i\) ,设它最小为 \(a_i\) ,原数为 \(b_i\) ,最大为 \(c_i\) \(f_i\) 表示 \(i\) 结尾的最长子序列, \(f_i=f_j+1\) , \(j\) 要满足 \(j<i\) \(c_j \leq b_i\) \(b_j \leq a_i\) 这不就CDQ套个树状数组就完了嘛QAQ 具体的话,把 \([L,mid]\) 按 \(c\) 排序,\([mid+1…
[BZOJ4553][Tjoi2016&Heoi2016]序列 Description 佳媛姐姐过生日的时候,她的小伙伴从某宝上买了一个有趣的玩具送给他.玩具上有一个数列,数列中某些项的值可能会变化,但同一个时刻最多只有一个值发生变化.现在佳媛姐姐已经研究出了所有变化的可能性,她想请教你,能否选出一个子序列,使得在任意一种变化中,这个子序列都是不降的?请你告诉她这个子序列的最长长度即可.注意:每种变化最多只有一个值发生变化.在样例输入1中,所有的变化是: 1 2 3 2 2 3 1 3 3 1…
hdu 5618 Jam's problem again #include <bits/stdc++.h> #define MAXN 100010 using namespace std; int n,k,T,xx; int ans[MAXN],c[MAXN],f[MAXN]; struct Node{ int x,y,z,id; }a[100010],b[100010]; inline int read(){ char ch; bool f=false; int res=0; while (…
P4093 [HEOI2016/TJOI2016]序列 题目描述 佳媛姐姐过生日的时候,她的小伙伴从某宝上买了一个有趣的玩具送给他.玩具上有一个数列,数列中某些项的值可能会变化,但同一个时刻最多只有一个值发生变化.现在佳媛姐姐已经研究出了所有变化的可能性,她想请教你,能否选出一个子序列,使得在任意一种变化中,这个子序列都是不降的?请你告诉她这个子序列的最长长度即可 . 注意:每种变化最多只有一个值发生变化.在样例输入1中,所有的变化是: 1 2 3 2 2 3 1 3 3 1 1 3 1 2 4…
洛谷 P4093 [HEOI2016/TJOI2016]序列 CDQ分治优化DP 题目描述 佳媛姐姐过生日的时候,她的小伙伴从某宝上买了一个有趣的玩具送给他. 玩具上有一个数列,数列中某些项的值可能会变化,但同一个时刻最多只有一个值发生变化.现在佳媛姐姐已经研究出了所有变化的可能性,她想请教你,能否选出一个子序列,使得在任意一种变化中,这个子序列都是不降的?请你告诉她这个子序列的最长长度即可. 输入格式 输入的第一行有两个正整数 \(n,m\),分别表示序列的长度和变化的个数. 接下来一行有 \…
原文链接http://www.cnblogs.com/zhouzhendong/p/8672434.html 题目传送门 - BZOJ4553 题目传送门 - 洛谷P4093 题解 设$Li$表示第$i$个位置最小值,$Ri$表示最大值$vi$表示原值. 那么如果$i$能到$j$这个位置,则满足: $i<j$ $rj\leq xi$ $xi\leq li$ 于是CDQ分治水过. 代码 #include <bits/stdc++.h> using namespace std; const…
https://www.lydsy.com/JudgeOnline/problem.php?id=4553 佳媛姐姐过生日的时候,她的小伙伴从某宝上买了一个有趣的玩具送给他.玩具上有一个数列,数列中某些项的值可能会变化,但同一个时刻最多只有一个值发生变化.现在佳媛姐姐已经研究出了所有变化的可能性,她想请教你,能否选出一个子序列,使得在任意一种变化中,这个子序列都是不降的?请你告诉她这个子序列的最长长度即可.注意:每种变化最多只有一个值发生变化.在样例输入1中,所有的变化是: 1 2 3 2 2…
Portal Description 给出一个\(n(n\leq10^5)\)个数的数列\(\{a_n\}\)和\(m(m\leq10^5)\)个形如\((x,y)\)的变化,表示\(a_x\)可以变成\(y\).我们称一个子序列是合法的当且仅当其中至多一个数发生变化后,其仍然是一个不降序列.求最长合法子序列的长度. Solution 记\(a_i\)能变化的最小值为\(fr_i\),最大值为\(to_i\),\(dp[i]\)表示以\(a_i\)结尾的最长合法子序列的长度.则很容易得到: \[…
这道题原来很水的? noteskey 一开始以为是顺序的 m 个修改,然后选出一段最长子序列使得每次修改后都满足不降 这 TM 根本不可做啊! 于是就去看题解了,然后看到转移要满足的条件的我发出了黑人问号... 然后才发现原来是求的子序列是满足任意一次修改后不降... 于是列出两(san)个条件式子,就可以 CDQ 切掉了 QWQ \(j<i\) \(a_j<min_i\) \(max_j<a_i\) 这里的 max 和 min 就是某个位置上出现过的最 大/小 值 watch out…