TensorFlow的Session对象是支持多线程的,可以在同一个会话(Session)中创建多个线程,并行执行.在Session中的所有线程都必须能被同步终止,异常必须能被正确捕获并报告,会话终止的时候, 队列必须能被正确地关闭.TensorFlow提供了两个类来实现对Session中多线程的管理:tf.Coordinator和 tf.QueueRunner,这两个类往往一起使用. Coordinator类用来管理在Session中的多个线程,可以用来同时停止多个工作线程并且向那个在等待所有…
#### ''' tf.train.slice_input_producer :定义样本放入文件名队列的方式[迭代次数,是否乱序],但此时文件名队列还没有真正写入数据 slice_input_producer(tensor_list, num_epochs=None, shuffle=True, seed=None,capacity=32, shared_name=None, name=None) tensor_list:如[images,labels] = [['img1','image2',…
  #### ''' tf.train.slice_input_producer :定义样本放入文件名队列的方式[迭代次数,是否乱序],但此时文件名队列还没有真正写入数据 slice_input_producer(tensor_list, num_epochs=None, shuffle=True, seed=None,capacity=32, shared_name=None, name=None) tensor_list:如[images,labels] = [['img1','image2…
背景 作者:DeepLearningStack,阿里巴巴算法工程师,开源TensorFlow Contributor] 使用GPU训练时,一次训练任务无论是模型参数还是中间结果都需要占用大量显存.为了避免每次训练重新开辟显存带来计算之外的开销,一般框架的做法是在真正的训练任务开始前,将每个节点的输入和输出,以及模型参数的shape计算出来并全局开辟一次,例如Caffe就是这种做法.随着深度学习模型的发展和迭代,不仅模型训练的数据shape可能发生变化,就连模型本身在训练过程中也可能发生变化,那么…
1.tf.train.batch(image, batch_size=batch_size, num_threads=1) # 获取一个batch的数据 参数说明:image表示输入图片,batch_size表示一个batch的大小,num_threads表示使用几个线程进行执行 import tensorflow as tf import numpy as np def generate_data(): num = 25 label = np.asarray(range(0, num)) im…
考虑到要是自己去做一个项目,那么第一步是如何把数据导入到代码中,何种形式呢?是否需要做预处理?官网中给的实例mnist,数据导入都是写好的模块,那么自己的数据呢? 一.从文件中读取数据(CSV文件.二进制文件.图片或其他格式) 读取文件,都需要一个阅读器reader和一个转换解码操作decode,不同格式的文件对应不同的接口API. 1)CSV文件:用的文件读取器和解码器是 TextLineReader 和 decode_csv . 下面代码来自TensorFlow官网,加了注释. filena…
1.简介 将数据划分成若干批次的数据,使用的函数主要有: tf.train.slice_input_producer(tensor_list,shuffle=True,seed=None,capacity=32) tf.train.batch(tensors,batch_size,num_threads=1,capacity=32,allow_smaller_final_batch=False) 参数说明: shuffle:为True时进行数据清洗 allow_smaller_final_bat…
1. 配套使用: tf.train.Examples将数据转换为二进制,提升IO效率和方便管理 对于int类型 : tf.train.Examples(features=tf.train.Features(feature=tf.train.Feature(int64_list=tf.train.Int64List(value=[value])))) 对于bytes类型: tf.train.Examples(features=tf.train.Features(feature=tf.train.F…
tensorflow数据读取机制 tensorflow中为了充分利用GPU,减少GPU等待数据的空闲时间,使用了两个线程分别执行数据读入和数据计算. 具体来说就是使用一个线程源源不断的将硬盘中的图片数据读入到一个内存队列中,另一个线程负责计算任务,所需数据直接从内存队列中获取. tf在内存队列之前,还设立了一个文件名队列,文件名队列存放的是参与训练的文件名,要训练 N个epoch,则文件名队列中就含有N个批次的所有文件名. 示例图如下: 图片来至于 https://zhuanlan.zhihu.…
tensorflow数据读取机制 tensorflow中为了充分利用GPU,减少GPU等待数据的空闲时间,使用了两个线程分别执行数据读入和数据计算. 具体来说就是使用一个线程源源不断的将硬盘中的图片数据读入到一个内存队列中,另一个线程负责计算任务,所需数据直接从内存队列中获取. tf在内存队列之前,还设立了一个文件名队列,文件名队列存放的是参与训练的文件名,要训练 N个epoch,则文件名队列中就含有N个批次的所有文件名. 示例图如下: 图片来至于 https://zhuanlan.zhihu.…