首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
两个矩阵相关性计算 R语言
2024-11-04
R语言矩阵相关性计算及其可视化?
目录 1. 矩阵相关性计算方法 base::cor/cor.test psych::corr.test Hmisc::rcorr 其他工具 2. 相关性矩阵转化为两两相关 3. 可视化 corrplot gplots::heatmap.2 pheatmap 1. 矩阵相关性计算方法 base::cor/cor.test R基础函数cor或cor.test都可计算相关性系数,但cor可直接计算矩阵的相关性,而cor.test不可. 两者计算非矩阵时,cor仅得到相关系数,而cor.test还能得到
实现两个矩阵相乘的C语言程序
程序功能:实现两个矩阵相乘的C语言程序,并将其输出 代码如下: #include "stdafx.h" #include "windows.h" void Multi(int * left, int * right, int * result, int f1, int f2, int s1, int s2); int main() { int i, j; ][] = { {,,}, {,,}, {,,}, {,,}}; ][] = { { ,, }, { ,, },
R语言矩阵matrix函数
矩阵是元素布置成二维矩形布局的R对象. 它们包含相同原子类型的元素.尽管我们可以创建只包含字符或只逻辑值的矩阵,但是它们没有多大用处.我们使用的是在数学计算中含有数字元素矩阵. 使用 matrix()函数创建一个矩阵. 语法 R语言中创建矩阵的基本语法是: matrix(data, nrow, ncol, byrow, dimnames) 以下是所使用的参数的说明: data - 是这成为矩阵的数据元素输入向量. nrow - 是要创建的行数. ncol - 要被创建的列的数目. byrow -
R语言
什么是R语言编程? R语言是一种用于统计分析和为此目的创建图形的编程语言.不是数据类型,它具有用于计算的数据对象.它用于数据挖掘,回归分析,概率估计等领域,使用其中可用的许多软件包. R语言中的不同数据对象是什么?它们是R语言中的6个数据对象.它们是向量,列表,数组,矩阵,数据框和表. 什么使R语言中的有效变量名?有效的变量名称由字母,数字和点或下划线字符组成.变量名以字母或不以数字后跟的点开头. 数组和矩阵之间的主要区别是什么?矩阵总是二维的,因为它只有行和列.但是阵列可以具有任何数量的维度,
Rserve详解,R语言客户端RSclient【转】
R语言服务器程序 Rserve详解 http://blog.fens.me/r-rserve-server/ Rserve的R语言客户端RSclient https://blog.csdn.net/u011955252/article/details/65442783 http://blog.fens.me/series-r/ R的极客理想系列文章 R的极客理想系列文章,涵盖了R的思想,使用,工具,创新等的一系列要点,以我个人的学习和体验去诠释R的强大. R语言作为统计学一门语言,一直在小众领域
R语言rvest包网络爬虫
R语言网络爬虫初学者指南(使用rvest包) 钱亦欣 发表于 今年 06-04 14:50 5228 阅读 作者 SAURAV KAUSHIK 译者 钱亦欣 引言 网上的数据和信息无穷无尽,如今人人都用百度谷歌来作为获取知识,了解新鲜事物的首要信息源.所有的这些网上的信息都是直接可得的,而为了满足日益增长的数据需求,我坚信网络数据爬取已经是每个数据科学家的必备技能了.在本文的帮助下,你将会突破网络爬虫的技术壁垒,实现从不会到会. 大部分网上呈现的信息都是以非结构化的格式存储(html)且
【R】表达矩阵指定绘制两样本的相关性散点图?
表达矩阵 要做两两样本的相关性散点图,并计算标明相关系数. 编写函数要点: 直接在aes中传参是不行的 线性回归表达式 函数 方法1:用!!ensym myplot <- function(indata, inx, iny){ nms <- names(indata) x <- nms[inx] y <- nms[iny] regression <- paste0(x, " ~ ", y) dat.lm <- lm(as.formula(regres
R语言中两个数组(或向量)的外积怎样计算
所谓数组(或向量)a和b的外积,指的是a的每个元素和b的每个元素搭配在一起相乘得到的新元素.当然运算规则也可自己定义.外积运算符为 %o%(注意:百分号中间的字母是小写的字母o).比如: > a <- 1:2 > b <- 3:5 > d <- a %o% b > d [,1] [,2] [,3] [1,] 3 4 5 [2,] 6 8 10 注意维数公式为: dim(d) = c( dim(a) , dim(b) ) 实际上R语言提供了一个更为一般化得外积函数o
皮尔逊相似度计算的例子(R语言)
编译最近的协同过滤算法皮尔逊相似度计算.下顺便研究R简单使用的语言.概率统计知识. 一.概率论和统计学概念复习 1)期望值(Expected Value) 由于这里每一个数都是等概率的.所以就当做是数组或向量中全部元素的平均数吧.能够使用R语言中函数mean(). 2)方差(Variance) 方差分为population variance整体方差和sample variance样本方差,差别是整体方差除以N,样本方差除以N-1. 数理统计中经常使用样本方差,R语言的var()函数计算的也是样本
皮尔森相似度计算举例(R语言)
整理了一下最近对协同过滤推荐算法中的皮尔森相似度计算,顺带学习了下R语言的简单使用,也复习了概率统计知识. 一.概率论和统计学概念复习 1)期望值(Expected Value) 因为这里每个数都是等概率的,所以就当做是数组或向量中所有元素的平均数吧.可以使用R语言中函数mean(). 2)方差(Variance) 方差分为population variance总体方差和sample variance样本方差,区别是总体方差除以N,样本方差除以N-1. 数理统计中常用样本方差,R语言的var()
R语言基础:数组&列表&向量&矩阵&因子&数据框
R语言基础:数组和列表 数组(array) 一维数据是向量,二维数据是矩阵,数组是向量和矩阵的直接推广,是由三维或三维以上的数据构成的. 数组函数是array(),语法是:array(dadta, dim),其中data必须是同一类型的数据,dim是各维的长度组成的向量. 1.产生一个三维和四维数组. 例1:xx <- array(1:24, c(3, 4, 2)) #一个三维数组 例2:yy <- array(1:36, c(2, 3, 3, 2)) #一个四维数组 2.dim()函数可
R语言编程艺术# 矩阵(matrix)和数组(array)
矩阵(matrix)是一种特殊的向量,包含两个附加的属性:行数和列数.所以矩阵也是和向量一样,有模式(数据类型)的概念.(但反过来,向量却不能看作是只有一列或一行的矩阵. 数组(array)是R里更一般的对象,矩阵是数组的一个特殊情形.数组可以是多维的.例如:一个三维数组可以包含行.列和层(layer),而一个矩阵只有行和列两个维度 1.创建矩阵 矩阵的行和列的下标都是从1开始,如:矩阵a左上角的元素记作a[1,1].矩阵在R中是按列存储的,也就是说先存储第一列,再存储第二列,以此类推. > y
R语言编程艺术#02#矩阵(matrix)和数组(array)
矩阵(matrix)是一种特殊的向量,包含两个附加的属性:行数和列数.所以矩阵也是和向量一样,有模式(数据类型)的概念.(但反过来,向量却不能看作是只有一列或一行的矩阵. 数组(array)是R里更一般的对象,矩阵是数组的一个特殊情形.数组可以是多维的.例如:一个三维数组可以包含行.列和层(layer),而一个矩阵只有行和列两个维度 1.创建矩阵 矩阵的行和列的下标都是从1开始,如:矩阵a左上角的元素记作a[1,1].矩阵在R中是按列存储的,也就是说先存储第一列,再存储第二列,以此类推. > y
R语言做相关性分析
衡量随机变量相关性的方法主要有三种:pearson相关系数,spearman相关系数,kendall相关系数: 1. pearson相关系数,亦即皮尔逊相关系数 pearson相关系数用来衡量两个随机变量之间的相关性 R语言中求两个随机变量pearson相关系数的函数: 1//赋予a,b向量值 2a<-c(1,2,3) 3b<-c(11,12,14) 4 5//计算pearson相关系数 6cor.test(a,b,method="pearson") 结果 Pe
统计计算与R语言的资料汇总(截止2016年12月)
本文在Creative Commons许可证下发布. 在fedora Linux上断断续续使用R语言过了9年后,发现R语言在国内用的人逐渐多了起来.由于工作原因,直到今年暑假一个赴京工作的机会与一位统计专业的人士聊天,才知道R语言的强大威力!(当然这里没有贬低SPSS, SAS,Stata的意思). R语言是用于统计分析.绘图的语言和操作环境.R是属于GNU系统的一个自由.免费.源代码开放的软件,它是一个用于统计计算和统计制图的优秀工具.它是统计领域广泛使用的诞生于 1980年左右的 S 语言的
R语言笔记1--向量、数组、矩阵、数据框、列表
注释:R语言是区分大小写的 1.向量 R语言中可以将各种向量赋值为一个变量,这种赋值操作符就是等号“=”,也可以使用“<-”. 1)产生向量 (1)函数c() 例如:x1=c(2,4,6,8,0) 表示数列 (2)例如: 向量a:2到60的元素都乘以2再加1 a[5]:显示向量a的第5个元素 a[-5]:除去向量a的第5个元素,显示其它元素 a[1:5]:显示第1到第5个元素 a[-(1:5)]:除去第1到第5个元素,显示其余的元素 a[c(2,4,7)]:显示第2,第4,第7个元素 a[
R语言的导数计算(转)
转自:http://blog.fens.me/r-math-derivative/ 前言 高等数学是每个大学生都要学习的一门数学基础课,同时也可能是考完试后最容易忘记的一门知识.我在学习高数的时候绞尽脑汁,但始终都不知道为何而学.生活和工作基本用不到,就算是在计算机行业和金融行业,能直接用到高数的地方也少之又少,学术和实际应用真是相差太远了. 不过,R语言为我打开了一道高数应用的大门,R语言不仅能方便地实现高等数学的计算,还可以很容易地把一篇论文中的高数公式应用于产品的实践中.因为R语言我重新学
使用R语言-计算均值,方差等
R语言对于数值计算很方便,最近用到了计算方差,标准差的功能,特记录. 数据准备 height <- c(6.00, 5.92, 5.58, 5.92) 1 计算均值 mean(height) [1] 5.855 2 计算中位数 median(height) [1] 5.92 3 计算标准差 sd(height) [1] 0.1871719 4 计算方差 var(height) [1] 0.03503333 5 计算两个变量之间的相关系数 cor(height,log(height)) [1] 0
R语言学习——向量,矩阵
在R中,基本的数据结构有:向量,矩阵,数组,数据框,列表,因子,函数等. 向量:一系列同类型的有序元素构成. 向量是一维结构. 向量是R最简单的数据结构,在R中没有标量. 标量被看成1个元素的向量. 向量元素必须是同类型的. 由于向量是最简单的数据结构,因此本章中以向量为例子来解释各个概念. 矩阵:二维的同类型元素的集合. 矩阵由函数matrix创建. 矩阵需要输入行数,列数. 矩阵是二维的,引用元素可通过双下标做索引. 矩阵在物理实现时,是向量附加行列数属性来实现的,因此也可以通过向量的方式引
R语言计算moran‘I
R语言计算moran‘I install.packages("maptools")#画地图的包 install.packages("spdep")#空间统计,moran'I install.packages("tripack") install.packages("RANN") library("maptools") library("spdep") library("trip
热门专题
Unity HoloLens 怎么跟踪手的位置
oracle字符串 java 超长截取
post formdata传参最长多少
sql查询提供的聚合函数
security filter 执行顺序
Cortex-m0入门
vs code core 配置
L1-064 估值一亿的AI核心代码 (20
uniapp 原生通信
celery flower重启展示之前的记录
DateFormatUtils string 转date
matlab如何计算p范数
art-template 做官网
css ui 原生框架
powerquery操作案例
Linux自定义终端格式
C# datatable怎么只取前几条的数据
c# chart控件绑定datatable
linux过滤文本中不要的
app端和小程序的优劣势