因为每一条数据都服从IID原则: 根据中心极限定理,当数据增加的时候,样本均值的分布慢慢变成正态分布 不管分布式什么分布,累加起来都是高斯分布 As sum increases, sum of non-Gaussian, finite variance variables is also Gaussian 为什么要累加?因为Y出现的概率等于n个小y出现的概率相乘 p(Y)=累加p(yi) In probability theory, the central limit theorem (CLT)
title: [概率论]6-3:中心极限定理(The Central Limit Theorem) categories: - Mathematic - Probability keywords: - The Central Limit Theorem - The Normal distribution - The Delta Method toc: true date: 2018-04-09 09:21:44 Abstract: 本文介绍中心极限定理 Keywords: The Central
今天的主角是指数分布,由此导出\(\Gamma\)分布,同样,读者应尝试一边阅读,一边独立推导出本文的结论.由于本系列为我独自完成的,缺少审阅,如果有任何错误,欢迎在评论区中指出,谢谢! 目录 Part 1:指数分布的参数估计 Part 2:独立同分布指数分布之和与$\Gamma$分布 Part 3:$\Gamma$分布与其他分布 Part 1:指数分布的参数估计 指数分布是单参数分布族,总体\(X\sim E(\lambda)\)有时也记作\(\mathrm{Exp}(\lambda)\),此
By Yunduan Cui 这是我自己的PRML学习笔记,目前持续更新中. 第二章 Probability Distributions 概率分布 本章介绍了书中要用到的概率分布模型,是之后章节的基础.已知一个有限集合 \(\{x_{1}, x_{2},..., x_{n}\}\), 概率分布是用来建立一个模型:\(p(x)\). 这一问题又称作密度估计( density estimation ). 主要内容 1. Binomial and Multinomial distributions 面