首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
为什么划分比较多的特征容易对RF的决策产生更大的影响
2024-11-09
Bagging与随机森林(RF)算法原理总结
Bagging与随机森林算法原理总结 在集成学习原理小结中,我们学习到了两个流派,一个是Boosting,它的特点是各个弱学习器之间存在依赖和关系,另一个是Bagging,它的特点是各个弱学习器之间没有依赖关系,可以并行拟合,本文就对集成学习中的Bagging和随机森林做一个总结. 随机森林是集成学习中可以和GBDT相较衡的算法,尤其是它可以很方便地进行并行训练,在现在的大数据大样本下很有诱惑力. 1.Bagging的原理 在集成学习原理总结的Bagging原理这一块,我们画了这么一张流程图 从
【Python图像特征的音乐序列生成】一个更科学的图片分类参考方法,以及一个看起来很好用的数据集
数据集地址:http://www.imageemotion.org/ 论文地址:http://www.doc88.com/p-1905670442096.html
Bagging与随机森林算法原理小结
在集成学习原理小结中,我们讲到了集成学习有两个流派,一个是boosting派系,它的特点是各个弱学习器之间有依赖关系.另一种是bagging流派,它的特点是各个弱学习器之间没有依赖关系,可以并行拟合.本文就对集成学习中Bagging与随机森林算法做一个总结. 随机森林是集成学习中可以和梯度提升树GBDT分庭抗礼的算法,尤其是它可以很方便的并行训练,在如今大数据大样本的的时代很有诱惑力. 1. bagging的原理 在集成学习原理小结中,我们给Bagging画了下面一张原理图. 从上图可以看出,
3. 集成学习(Ensemble Learning)随机森林(Random Forest)
1. 集成学习(Ensemble Learning)原理 2. 集成学习(Ensemble Learning)Bagging 3. 集成学习(Ensemble Learning)随机森林(Random Forest) 4. 集成学习(Ensemble Learning)Adaboost 5. 集成学习(Ensemble Learning)GBDT 6. 集成学习(Ensemble Learning)算法比较 7. 集成学习(Ensemble Learning)Stacking 1. 前言 相信看
机器学习(六)—随机森林Random Forest
1.什么是随机采样? Bagging可以简单的理解为:放回抽样,多数表决(分类)或简单平均(回归): Bagging的弱学习器之间没有boosting那样的联系,不存在强依赖关系,基学习器之间属于并列生成.它的特点在“随机采样”. 随机采样(bootsrap)就是从我们的训练集里面采集固定个数的样本,但是每采集一个样本后,都将样本放回.也就是说,之前采集到的样本在放回后有可能继续被采集到.对于我们的Bagging算法,一般会随机采集和训练集样本数m一样个数的样本.这样得到的采样集和训练集样本的个
人工智能_2_特征处理.py
# 特征处理 # 特征预处理:通过统计方法将数据转换为算法需要的数据 # 数值型数据:标准缩放 # 规依法,标准化(常用,适用于当前大数据),缺失值处理(删除,填补中位数平均数,通常按照列填补) # 类别型数据:ont-hot编码 # 时间类型:时间的切分 # 特征处理API sklearn.preprocessing # ============================================== # 归一化:对数据变化--->默认[0,1]之间 """
OpenCV开发笔记(六十五):红胖子8分钟带你深入了解ORB特征点(图文并茂+浅显易懂+程序源码)
若该文为原创文章,未经允许不得转载原博主博客地址:https://blog.csdn.net/qq21497936原博主博客导航:https://blog.csdn.net/qq21497936/article/details/102478062本文章博客地址:https://blog.csdn.net/qq21497936/article/details/106926496各位读者,知识无穷而人力有穷,要么改需求,要么找专业人士,要么自己研究红胖子(红模仿)的博文大全:开发技术集合(包含Qt实
lecture6-mini批量梯度训练及三个加速的方法
Hinton的第6课,这一课中最后的那个rmsprop,关于它的资料,相对较少,差不多除了Hinton提出,没论文的样子,各位大大可以在这上面研究研究啊. 一.mini-批量梯度下降概述 这部分将介绍使用随机梯度下降学习来训练NN,着重介绍mini-批量版本,而这个也是现今用的最广泛的关于训练大型NN的方法.这里再回顾下关于一个线性神经元他的错误表面是怎样的. 这里的错误表面就是在一个空间中,水平轴是对应于NN的权重,竖直轴对应于所产生的错误的表面.对于一个误差平方的线性神经元,这个表面总是一个
利用weka和clementine数据挖掘举例
1.数据概述 本报告中采用的数据集来自于UCI经典数据集Adult,最初来源是由1994年Barry Becker的统计数据集,该数据集本来最初的主要任务是根据数据集中的相关属性预测某个人的年收入是大于50K还是小于等于50K.本数据集一共有14个属性用来预测个人的年收入,包括了年龄.工作阶层.教育程度.职业.性别.种族.家庭状况等情况.这14个基本属性中有一项属性为fnlwgt,即final weight,具有相同背景的人的fnlwgt应该类似.同时本数据集一共有32561个样本案例,属性的数
[Hinton] Neural Networks for Machine Learning - Converage
Link: Neural Networks for Machine Learning - 多伦多大学 Link: Hinton的CSC321课程笔记 Ref: 神经网络训练中的Tricks之高效BP (反向传播算法) 关于梯度下降的东西,涉及的知识很多,有必要单独一章 Lecture 06 —— mini批量梯度训练及三个加速的方法 (详见链接) 一.mini-批量梯度下降概述 这部分将介绍使用随机梯度下降(SGD)学习来训练NN,着重介绍mini-批量版本,而这个也是现今用的最广泛的关于训练大
弱分类器的进化--Bagging、Boosting、Stacking
一般来说集成学习可以分为三大类: 用于减少方差的bagging 用于减少偏差的boosting 用于提升预测结果的stacking 一.Bagging(1996) 1.随机森林(1996) RF = bagging + random-combination C&RT (1)RF介绍 RF通过Bagging的方式将许多个CART组合在一起,不考虑计算代价,通常树越多越好. RF中使用CART没有经过剪枝操作,一般会有比较大的偏差(variance),结合Bagging的平均效果可以降低CART的偏
04-09 XgBoost算法
目录 XgBoost算法 一.XgBoost算法学习目标 二.XgBoost算法详解 2.1 XgBoost算法参数 2.2 XgBoost算法目标函数 2.3 XgBoost算法正则化项 2.4 XgBoost算法最小化目标函数 2.5 XgBoost算法举例 三.XgBoost算法优缺点 3.1 优点 3.2 缺点 四.小结 更新.更全的<机器学习>的更新网站,更有python.go.数据结构与算法.爬虫.人工智能教学等着你:https://www.cnblogs.com/nickchen
[机器学习笔记]kNN进邻算法
K-近邻算法 一.算法概述 (1)采用测量不同特征值之间的距离方法进行分类 优点: 精度高.对异常值不敏感.无数据输入假定. 缺点: 计算复杂度高.空间复杂度高. (2)KNN模型的三个要素 kNN算法模型实际上就是对特征空间的的划分.模型有三个基本要素:距离度量.K值的选择和分类决策规则的决定. 距离度量 距离定义为: \[L_p(x_i,x_j)=\left( \sum^n_{l=1} |x_i^{(l)} - x_j^{(l)}|^p \right) ^{\frac{1}{p}}\] 一般
XGBoost、LightGBM、Catboost总结
sklearn集成方法 bagging 常见变体(按照样本采样方式的不同划分) Pasting:直接从样本集里随机抽取的到训练样本子集 Bagging:自助采样(有放回的抽样)得到训练子集 Random Subspaces:列采样,按照特征进行样本子集的切分 Random Patches:同时进行行采样.列采样得到样本子集 sklearn-bagging 学习器 BaggingClassifier BaggingRegressor 参数 可自定义基学习器 max_samples,max_feat
Image Processing and Analysis_15_Image Registration:a survey of image registration techniques——1992
此主要讨论图像处理与分析.虽然计算机视觉部分的有些内容比如特 征提取等也可以归结到图像分析中来,但鉴于它们与计算机视觉的紧密联系,以 及它们的出处,没有把它们纳入到图像处理与分析中来.同样,这里面也有一些 也可以划归到计算机视觉中去.这都不重要,只要知道有这么个方法,能为自己 所用,或者从中得到灵感,这就够了. 注意:Registration可翻译为“配准”或“匹配”,一般是图像配准,特征匹配(特征点匹配). MIA] Image matching as a diffusion process[
机器学习 - 案例 - 样本不均衡数据分析 - 信用卡诈骗 ( 标准化处理, 数据不均处理, 交叉验证, 评估, Recall值, 混淆矩阵, 阈值 )
案例背景 银行评判用户的信用考量规避信用卡诈骗 ▒ 数据 数据共有 31 个特征, 为了安全起见数据已经向了模糊化处理无法读出真实信息目标 其中数据中的 class 特征标识为是否正常用户 (0 代表正常, 1 代表异常) ▒ 目标 本质依旧是一个分类问题, 0/1 的问题判断是否为信用卡诈骗用户 而在数据中 class 已经进行标识, 而且这次的样本数据的两项结果是极度的不均衡 既正常用户的样本数量是远远大于异常数据的. 不均衡的数据处理方式可以进行 下采样, 或者上采样 ▨ 下采样 - 对
kNN进邻算法
一.算法概述 (1)采用测量不同特征值之间的距离方法进行分类 优点: 精度高.对异常值不敏感.无数据输入假定. 缺点: 计算复杂度高.空间复杂度高. (2)KNN模型的三个要素 kNN算法模型实际上就是对特征空间的的划分.模型有三个基本要素:距离度量.K值的选择和分类决策规则的决定. 距离度量 距离定义为: Lp(xi,xj)=(∑l=1n|x(l)i−x(l)j|p)1pLp(xi,xj)=(∑l=1n|xi(l)−xj(l)|p)1p 一般使用欧式距离:p = 2的个情况 Lp(xi,xj)
5G技术被夸大?专家来测试一下
像大多数新技术一样,5G也带来了大量媒体宣传.这种炒作中有些伴随着事实的严重扭曲和5G技术实际功能的放大.但是,有一个普遍共识的说法是5G将实现“极速”,换句话说,与前几代产品相比,带宽要高得多. 这些更高的带宽要求意味着用于传输移动业务的基础IP和光传输也将需要升级和重新设计.但是,这些变化不仅会在更高的带宽处停止,因为网络还将寻求实现比前几代移动技术所需的更低的延迟,更高的可用性和更高的可扩展性. 在这篇文章中,笔者将从IP和光传输网络的角度讨论5G技术变革的本质. 5G用例 3GPP(移动
Decision Tree、Random Forest、AdaBoost、GBDT
原文地址:https://www.jianshu.com/p/d8ceeee66a6f Decision Tree 基本思想在于每次分裂节点时选取一个特征使得划分后得到的数据集尽可能纯. 划分标准 信息增益(Information Gain) 信息增益 = 未划分数据集的信息熵 - 划分后子数据集的信息熵的数学期望值. 事件\(x_i\)的信息量\(=-logP(x_i)\),信息熵就是信息量的期望值,记作\(H(x)\),即\(H(x)=-\sum_{i=1}^{n}P(x_i)logP(x_
机器学习——Bagging与随机森林算法及其变种
Bagging算法: 凡解:给定M个数据集,有放回的随机抽取M个数据,假设如此抽取3组,3组数据一定是有重复的,所以先去重.去重后得到3组数据,每组数据量分别是s1,s2,s3,然后三组分别训练组合成一个强模型.如下图: 随机森林算法: 一般用于大规模数据,百万级以上的. 在Bagging算法的基础上,如上面的解释,在去重后得到三组数据,那么再随机抽取三个特征属性,选择最佳分割属性作为节点来创建决策树.可以说是 随机森林=决策树+Bagging 如下图 RF(随机森林)的变种: ExtraT
热门专题
“Your choise is”通过函数调用来实现 鸟哥
quartz 定时任务设置
idea在创建项目时新窗口打开
hadoop日志里面没有datanode日志
so easy2019徐州网络赛
go语言给多个变量赋一个值
微信小程序 携带 JSON 跳转
vue 打包app.js过大
MFC EditBrowse用法
回归 t值p值标准误之间的关系
java 数字转罗马
PY 非中文 正则表达式
python ufffd 乱码
spark sql使用join有重复列
asmcmd中进入文件路径
SpringCloud vue开源项目
strlen函数从中间扫描字符串
js全局变量赋值不上
List jsonobject 获取元素最大值
matlab直线检测 实现代码