图像实例分割:CenterMask CenterMask: single shot instance segmentation with point representation 论文链家: https://arxiv.org/abs/2004.04446 摘要 本文提出了一种简单.快速.准确的单镜头实例分割方法.单阶段实例分割面临两个主要挑战:对象实例区分和像素级特征对齐.相应地,本文将实例分割分解为两个子任务:局部形状预测(即使在重叠的情况下也可以分离实例)和全局显著性生成(以像素到像素的方
Two Stage 的精度优势 二阶段的分类:二步法的第一步在分类时,正负样本是极不平衡的,导致分类器训练比较困难,这也是一步法效果不如二步法的原因之一,也是focal loss的motivation.而第二步在分类时,由于第一步滤掉了绝大部分的负样本,送给第二步分类的proposal中,正负样本比例已经比较平衡了,所以第二步分类中不存在正负样本极度不平衡的问题.即二步法可以在很大程度上,缓和正负样本极度不平衡的分类问题二阶段的回归:二步法中,第一步会先对初始候选框进行校正,然后把校正过的候选框
一.简介 官方网站:http://cocodataset.org/全称:Microsoft Common Objects in Context (MS COCO)支持任务:Detection.Keypoints.Stuff.Panoptic.Captions说明:COCO数据集目前有三个版本,即2014.2015和2017,其中2015版只有测试集,其他两个有训练集.验证集和测试集.(本贴内容来源于官网+个人理解与描述) 二.数据集下载 方法一:直接官网下载(需要FQ).方法二:本人已把官网数据