知识结构 pyplot.plot()流程 1. _axes.py中plot()函数说明 a. 调用说明 plot([x], y, [fmt], data=None, **kwargs) plot([x], y, [fmt], [x2], y2, [fmt2], ..., **kwargs) You can use `.Line2D` properties as keyword arguments for more control on the appearance. Line pro
Problem Description Soda has a bipartite graph with n vertices and m undirected edges. Now he wants to make the graph become a complete bipartite graph with most edges by adding some extra edges. Soda needs you to tell him the maximum number of edges
决策树算法 决策树算法主要有ID3, C4.5, CART这三种. ID3算法从树的根节点开始,总是选择信息增益最大的特征,对此特征施加判断条件建立子节点,递归进行,直到信息增益很小或者没有特征时结束. 信息增益:特征 A 对于某一训练集 D 的信息增益 \(g(D, A)\) 定义为集合 D 的熵 \(H(D)\) 与特征 A 在给定条件下 D 的熵 \(H(D/A)\) 之差. 熵(Entropy)是表示随机变量不确定性的度量. \[ g(D, A) = H(D) - H(D \mid A)
论文信息 论文标题:Rumor Detection on Social Media with Graph AdversarialContrastive Learning论文作者:Tiening Sun.Zhong Qian.Sujun Dong论文来源:2022, WWW论文地址:download论文代码:download Abstract 尽管基于GNN的方法在谣言检测领域取得了一些成功,但是这些基于交叉熵损失的方法常常导致泛化能力差,并且缺乏对一些带有噪声的或者对抗性的样本的鲁棒性,尤其是一