首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
回归模型中的 F小于0.05 显著性表示的含义是什么
2024-10-25
多元线性回归检验t检验(P值),F检验,R方等参数的含义
做线性回归的时候,检验回归方程和各变量对因变量的解释参数很容易搞混乱,下面对这些参数进行一下说明: 1.t检验:t检验是对单个变量系数的显著性检验 一般看p值: 如果p值小于0.05表示该自变量对因变量解释性很强. 2.F检验:F检验是对整体回归方程显著性的检验,即所有变量对被解释变量的显著性检验 3.P值:P值就是t检验用于检测效果的一个衡量度,t检验值大于或者p值小于0.05就说明该变量前面的系数显著,选的这个变量是有效的. 4.R方:拟合优度检验 5.调整后的R方: 小结: t检
Python文件读取中:f.seek(0)和f.seek(0,0)有什么区别
file.seek()方法标准格式是:seek(offset,whence=0)offset:开始的偏移量,也就是代表需要移动偏移的字节数whence:给offset参数一个定义,表示要从哪个位置开始偏移:0代表从文件开头开始算起,1代表从当前位置开始算起,2代表从文件末尾算起.默认为0 whence 的默认参数是0. 所以seek(0)和f.seek(0,0)没有区别. whence 还有两种情况 是1,或者21的时候,相对当前坐标的移动,可以是正的也可以是负的.2的时候相对于文件结束的移动,
ruby中__FILE__,$FILENAME,$PROGRAM_NAME,$0等类似变量的含义
ruby中有4个类似的变量(常量),他们分别是: __FILE__,$FILENAME,$PROGRAM_NAME,$0 他们分别在代码中表示神马呢?我们用实际的例子说明一下: x.rb #!/usr/bin/ruby load 'xx.rb' puts __FILE__ puts $FILENAME puts $PROGRAM_NAME puts $0 xx.rb #!/usr/bin/ruby puts "*"*24 puts "in xx.rb".center
如何在R语言中使用Logistic回归模型
在日常学习或工作中经常会使用线性回归模型对某一事物进行预测,例如预测房价.身高.GDP.学生成绩等,发现这些被预测的变量都属于连续型变量.然而有些情况下,被预测变量可能是二元变量,即成功或失败.流失或不流失.涨或跌等,对于这类问题,线性回归将束手无策.这个时候就需要另一种回归方法进行预测,即Logistic回归. 在实际应用中,Logistic模型主要有三大用途: 1)寻找危险因素,找到某些影响因变量的"坏因素",一般可以通过优势比发现危险因素: 2)用于预测,可以预测某种情况发生的概
pytorch入门2.0构建回归模型初体验(数据生成)
pytorch入门2.x构建回归模型系列: pytorch入门2.0构建回归模型初体验(数据生成) pytorch入门2.1构建回归模型初体验(模型构建) pytorch入门2.2构建回归模型初体验(开始训练) pytorch对于神经网络有很好的封装,使得我们可以快速.简单的实现神经网络框架的编写. 0. 准备数据,并对数据集进行划分.划分其实有很多方法:见数据集划分实战code # 准备数据 import random x = torch.unsqueeze(torch.linspace(0,
二分类Logistic回归模型
Logistic回归属于概率型的非线性回归,分为二分类和多分类的回归模型.这里只讲二分类. 对于二分类的Logistic回归,因变量y只有“是.否”两个取值,记为1和0.这种值为0/1的二值品质型变量,我们称其为二分类变量. 假设在自变量$x_{1}, x_{2}, \cdots, x_{p}$作用下,y取“是”的概率是p,则取“否”的概率是1-p,研究的是当y取“是”发生的模率p与自变量$x_{1}, x_{2}, \cdots, x_{p}$的关系. Logistic回归模型 ①Logit变
pytorch入门2.1构建回归模型初体验(模型构建)
pytorch入门2.x构建回归模型系列: pytorch入门2.0构建回归模型初体验(数据生成) pytorch入门2.1构建回归模型初体验(模型构建) pytorch入门2.2构建回归模型初体验(开始训练) 终于要构建模型啦.这里我们构建的是回归模型,是用神经网络构建的,基本结构是什么样的呢? 你肯定听说过,神经网络有输入层.隐藏层.输出层,一般结构如下图所示(图片来源于网络,侵删): 所以,对比我们之前生成的数据来说,形如x=3我们想得到的输出为y=8.分别对应了上面的输入层和输出层,所以
logistic回归模型
一.模型简介 线性回归默认因变量为连续变量,而实际分析中,有时候会遇到因变量为分类变量的情况,例如阴性阳性.性别.血型等.此时如果还使用前面介绍的线性回归模型进行拟合的话,会出现问题,以二分类变量为例,因变量只能取0或1,但是拟合出的结果却无法保证只有这两个值. 那么使用概率的概念来进行拟合是否可以呢?答案也是否定的,因为1.因变量的概率和自变量之间的关系不是线性的,通常呈S型曲线,并且这种曲线是无法通过曲线直线化进行处理的.2.概率的取值应该在0-1之间,但是线性拟合的结果范围是整个实数集,并
Softmax回归——logistic回归模型在多分类问题上的推广
Softmax回归 Contents [hide] 1 简介 2 代价函数 3 Softmax回归模型参数化的特点 4 权重衰减 5 Softmax回归与Logistic 回归的关系 6 Softmax 回归 vs. k 个二元分类器 7 中英文对照 8 中文译者 转自:http://ufldl.stanford.edu/wiki/index.php/Softmax%E5%9B%9E%E5%BD%92 简介 在本节中,我们介绍Softmax回归模型,该模型是logistic回归模型在多分类问题上
pytorch入门2.2构建回归模型初体验(开始训练)
pytorch入门2.x构建回归模型系列: pytorch入门2.0构建回归模型初体验(数据生成) pytorch入门2.1构建回归模型初体验(模型构建) pytorch入门2.2构建回归模型初体验(开始训练) 经过上面两个部分,我们完成了数据生成.网络结构定义,下面我们终于可以小试牛刀,训练模型了! 首先,我们先定义一些训练时要用到的参数: EPOCH = 1000 # 就是要把数据用几遍 LR = 0.1 # 优化器的学习率,类似爬山的时候应该迈多大的步子. BATCH_SIZE=50 其次
2,turicreate入门 - 一个简单的回归模型
turicreate入门系列文章目录 1,turicreate入门 - jupyter & turicreate安装 2,turicreate入门 - 一个简单的回归模型 3,turicreate入门 - 优化回归模型,使得预测更准确 0,上传准备好的数据文件 fang_data2.csv 1,导入模块 import turicreate as tc 2,加载数据 sf = tc.SFrame('fang_data.csv') 可能遇到文件编码格式错误,使用文本编辑工具如notepad++将文件
MATLAB中回归模型
(1).一元线性回归:数学模型定义 模型参数估计 检验.预测及控制 1.回归模型: 可线性化的一元非线性回归 (2).多元线性回归:数学模型定义 模型参数估计 多元线性回归中检验与预测 逐步回归分析 希腊字母表:α 阿尔法, β 贝塔, γ 伽玛,δ 德尔塔, ε 伊普西隆, ζ 泽塔, η 伊塔, θ 西塔, ι 约塔, κ 卡帕, λ 兰姆达,μ 米欧 ,ν 纽, ξ 克西, ο 欧米克隆, π 派, ρ 柔 ,σ 西格玛, τ 陶 ,υ 玉普西隆, φ 弗爱
第十三次作业——回归模型与房价预测&第十一次作业——sklearn中朴素贝叶斯模型及其应用&第七次作业——numpy统计分布显示
第十三次作业——回归模型与房价预测 1. 导入boston房价数据集 2. 一元线性回归模型,建立一个变量与房价之间的预测模型,并图形化显示. 3. 多元线性回归模型,建立13个变量与房价之间的预测模型,并检测模型好坏,并图形化显示检查结果. 4. 一元多项式回归模型,建立一个变量与房价之间的预测模型,并图形化显示. 代码: #导入boston房价数据集 from sklearn.datasets import load_boston import pandas as pd boston =
Pandas 之 过滤DateFrame中所有小于0的值并替换
Outline 前几天,数据清洗时有用到pandas去过滤大量数据中的“负值”: 把过滤出来的“负值”替换为“NaN”或者指定的值. 故做个小记录. 读取CSV文件 代码: import pandas as pd import numpy as np df = pd.read_csv('D:\All_Kinds_Stock_Data\windpy_filter_after\SH600036.csv') df # 开发环境: ipython notebook 下 读取本地csv文件,输出结果如下:
python中大于0的元素全部转化为1,小于0的元素全部转化为0的代码
[code] """ 大于0的元素全部转化为1 """ np_arr = np.array([[1 ,2, 3, 4]]) print("转化前:") print(np_arr) print("转化后:") print(np.int64(np_arr>0)) [result] 转化前: [[1 2 3 4]] 转化后: [[1 1 1 1]] [code] """ 小于0
逻辑回归模型(Logistic Regression, LR)--分类
逻辑回归(Logistic Regression, LR)模型其实仅在线性回归的基础上,套用了一个逻辑函数,但也就由于这个逻辑函数,使得逻辑回归模型成为了机器学习领域一颗耀眼的明星,更是计算广告学的核心.本文主要详述逻辑回归模型的基础,至于逻辑回归模型的优化.逻辑回归与计算广告学等,请关注后续文章. 1 逻辑回归模型 回归是一种极易理解的模型,就相当于y=f(x),表明自变量x与因变量y的关系.最常见问题有如医生治病时的望.闻.问.切,之后判定病人是否生病或生了什么病,其中的望闻问切就是获取自变
逻辑回归模型(Logistic Regression, LR)基础
逻辑回归模型(Logistic Regression, LR)基础 逻辑回归(Logistic Regression, LR)模型其实仅在线性回归的基础上,套用了一个逻辑函数,但也就由于这个逻辑函数,使得逻辑回归模型成为了机器学习领域一颗耀眼的明星,更是计算广告学的核心.本文主要详述逻辑回归模型的基础,至于逻辑回归模型的优化.逻辑回归与计算广告学等,请关注后续文章. 1 逻辑回归模型 回归是一种极易理解的模型,就相当于y=f(x),表明自变量x与因变量y的关系.最常见问题有如医生治病时的望.
【Python数据挖掘】回归模型与应用
线性回归 ( Linear Regression ) 线性回归中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归称为一元线性回归. 如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归. 在监督学习中,学习样本为 D = { (x(i), y(i)):i =1, . . . , m } ,预测的结果y(i)为连续值变量,需要学习映射 f:X → Y ,并且假定输入X和输出Y之间有线性相关关系. 给出一组数据: 其中x是实数域中的二
Probit回归模型
Probit模型也是一种广义的线性模型,当因变量为分类变量时,有四种常用的分析模型: 1.线性概率模型(LPM)2.Logistic模型3.Probit模型4.对数线性模型 和Logistic回归一样,Probit回归也分为:二分类Probit回归.有序多分类Probit回归.无序多分类Probit回归. 我们再来回顾一下因变量为分类变量的分析思路,以二分类因变量为例,为例使y的预测值在[0,1]之间,我们构造一个理论模型: 函数F(x,β)被称为“连接函数”,如果连接函数为标准正态分布,则模型
深度学习实践系列(1)- 从零搭建notMNIST逻辑回归模型
MNIST 被喻为深度学习中的Hello World示例,由Yann LeCun等大神组织收集的一个手写数字的数据集,有60000个训练集和10000个验证集,是个非常适合初学者入门的训练集.这个网站也提供了业界对这个数据集的各种算法的尝试结果,也能看出机器学习的算法的演进史,从早期的线性逻辑回归到K-means,再到两层神经网络,到多层神经网络,再到最近的卷积神经网络,随着的算法模型的改善,错误率也不断下降,所以目前这个数据集的错误率已经可以控制在0.2%左右,基本和人类识别的能力相当了. 这
热门专题
cout文件尾会怎么样
.net code api 快速开发框架 2021
共享文件夹的ip地址怎么看
QN github官网
软路由配置多公网IP上网
国际化i18n官网地址是多少
lightgbm 思维导图
boolean类型通过object变成了string
ubuntu系统进入单用户模式需要密码
strusts2流量特征
models 手机号
wsdl4j解析wsdl
centos系统安装时如何进行软件选择
seaborn雷达图
python顺时针旋转矩阵
C# RS232 通信端口
c# 怎么获取 sql print
x1carbon 4k扩展 2018
php 接口返回数据压缩
求20的阶乘java