首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
基于kafka的直播数据分析
2024-11-03
基于Flink的视频直播案例(上)
目录 数据产生 Logstash部分 Kafka部分 Flink部分 配置/准备代码 视频核心指标监控 本案例参考自阿里云的视频直播解决方案之视频核心指标监控和视频直播解决方案之直播数字化运营. 基于Kafka + Flink + ELK + Redis实现视频直播数据的实时处理和可视化. 选型仅仅出于练习考虑,Logstash一般会换成flume或者直接用kafka. 模拟的总体流程:通过http请求发送json到Logstash,后者将数据转发到Kafka,然后Flink拉取数据进行处理,结
从0到1搭建基于Kafka、Flume和Hive的海量数据分析系统(一)数据收集应用
大数据时代,一大技术特征是对海量数据采集.存储和分析的多组件解决方案.而其中对来自于传感器.APP的SDK和各类互联网应用的原生日志数据的采集存储则是基本中的基本.本系列文章将从0到1,概述一下搭建基于Kafka.Flume.Zookeeper.HDFS.Hive的海量数据分析系统的框架.核心应用和关键模块. 项目源代码存储于GitHub:源码 系统架构概述 本系列文章所介绍的数据分析系统,定位于一种通用的大数据分析系统,可用于电商.互联网和物联网的实际解决方案中.该应用主要解决从多种多样的互联
基于Kafka Connect框架DataPipeline在实时数据集成上做了哪些提升?
在不断满足当前企业客户数据集成需求的同时,DataPipeline也基于Kafka Connect 框架做了很多非常重要的提升. 1. 系统架构层面. DataPipeline引入DataPipeline Manager的概念,主要用于优化Source和Sink的全局化生命周期管理.当任务出现异常时,可以实现对目的端和全局生命周期的管理.例如,处理源端到目的端读取速率不匹配以及暂停等状态的协同. 为了加强系统的健壮性,我们把Connector任务的参数保存在ZooKeeper中,方便任务重启后读
打造实时数据集成平台——DataPipeline基于Kafka Connect的应用实践
导读:传统ETL方案让企业难以承受数据集成之重,基于Kafka Connect构建的新型实时数据集成平台被寄予厚望. 在4月21日的Kafka Beijing Meetup第四场活动上,DataPipeline CTO陈肃分享了DataPipeline是如何基于Kafka Connect框架构建实时数据集成平台的应用实践.以下内容是基于现场录音整理的文字,供大家参考. 什么是数据集成?最简单的应用场景就是:一个数据源,一个数据目的地,数据目的地可以一个数据仓库,把关系型数据库的数据同步到数据仓库
TOP100summit:【分享实录-Microsoft】基于Kafka与Spark的实时大数据质量监控平台
本篇文章内容来自2016年TOP100summit Microsoft资深产品经理邢国冬的案例分享.编辑:Cynthia 邢国冬(Tony Xing):Microsoft资深产品经理.负责微软应用与服务集团的大数据平台构建,数据产品与服务. 导读:微软的ASG (应用与服务集团)包含Bing,.Office,.Skype.每天产生多达5 PB以上数据,如何构建一个高扩展性的data audit服务来保证这样量级的数据完整性和实时性非常具有挑战性.本文将介绍微软ASG大数据团队如何利用Kafka.
基于Kafka Connect框架DataPipeline可以更好地解决哪些企业数据集成难题?
DataPipeline已经完成了很多优化和提升工作,可以很好地解决当前企业数据集成面临的很多核心难题. 1. 任务的独立性与全局性. 从Kafka设计之初,就遵从从源端到目的的解耦性.下游可以有很多个Consumer,如果不是具有这种解耦性,消费端很难扩展.企业做数据集成任务的时候,需要源端到目的端的协同性,因为企业最终希望把握的是从源端到目的端的数据同步拥有一个可控的周期,并能够持续保持增量同步.在这个过程中,源端和目的端相互独立的话,会带来一个问题,源端和目的端速度不匹配,一快一慢,造成数
DataPipeline丨瓜子二手车基于Kafka的结构化数据流
文 |彭超 瓜子大数据架构师 交流微信 | datapipeline2018 一.为什么选择Kafka 为什么选Kafka?鉴于庞大的数据量,需要将其做成分布式,这时需要将Q里面的数据分到许多机器上进行存储,除此之外还有分布式的计算需求.同时需要支持多语言,如Java.GO.php等,另外还有高可用的需求. 二.Kafka集群 Realtime的Kafka集群通过Mirror Maker将数据全部同步到Analysis的Kafka集群. Realtime的Kafka集群主要负责在线实时读
nakadi 一款基于kafka 的http event broker
nakadi 是zalando 开源的一款基于kafka 的event broker ,我们可以方便的使用http 协议进行操作 支持一些特性: stream 操作,我们可以流的方式订阅event event 支持基于json schema 我们可以对于event 进行数据校验,方便的schema 注册 支持oauth .event type 的安全认证,同时也支持黑名单用户以及应用授权 比较全的监控集成 环境准备 docker-compose 文件 说明使用pg 存储基本的元数据,此项目集成了
基于Kafka消息驱动最终一致事务(二)
实现用例分析 上篇基于Kafka消息驱动最终一致事务(一)介绍BASE的理论,接着我们引入一个实例看如何实现BASE,我们会用图7显示的算法实现BASE.
基于Kafka消息驱动最终一致事务(一)
基本可用软状态最终一致事务 本用例分两个数据库分别是用户库和交易库,不使用分布式事务,使用基于消息驱动实现基本可用软状态最终一致事务(BASE).现在说明下事务逻辑演化步骤,尊从CAP原则,即分布式系统不能全部确保一致性.可用性.分区容错性,只能三选二.文章里从一致性模式讨论,例子里每次出售物品时,将一行添加到交易表中,并更新买方和卖方的数量. 使用ACID风格的事务这是强一致性事务,SQL将如图所示.
基于python的直播间接口测试实战 详解结合项目
基于python的直播间接口测试详解 一.基本用例内容描述 以设置白名单 /advisor/setUserWhiteList.do接口为例,该方法为POST at first,先要导入一些常用到的模块 接下来是针对一个接口的单元测试框架,类名的前缀需要是Test开头,用例的def方法名必须是以test开头,这样以便我们后续便于管理testsuite 首先是框架分为SetUp(self),tearDown(self)以及test_***(self)这三个部分, 先说下SetUp(self),tea
深入浅出理解基于 Kafka 和 ZooKeeper 的分布式消息队列
消息队列中间件是分布式系统中重要的组件,主要解决应用耦合,异步消息,流量削锋等问题.实现高性能,高可用,可伸缩和最终一致性架构,是大型分布式系统不可缺少的中间件. 本场 Chat 主要内容: Kafka 的架构解读: Kafka 为什么要将 Topic 进行分区: Kafka 高可靠性实现基础解读: Kafka 复制原理和同步方式: Leader 选举机制,及如何确保新选举出的 Leader 是优选: 同步副本 ISR: Kafka 数据可靠性和持久性保证: 深入解读 HW 机制: Kafka
Knative 实战:基于 Kafka 实现消息推送
作者 | 元毅 阿里云智能事业群高级开发工程师 导读:当前在 Knative 中已经提供了对 Kafka 事件源的支持,那么如何基于 Kafka 实现消息推送呢?本文作者将以阿里云 Kafka 产品为例,给大家解锁这一新的姿势. 背景 消息队列 for Apache Kafka 是阿里云提供的分布式.高吞吐.可扩展的消息队列服务.消息队列 for Apache Kafka 广泛用于日志收集.监控数据聚合.流式数据处理.在线和离线分析等大数据领域,已成为大数据生态中不可或缺的部分. 结合 Knat
基于Kafka的实时计算引擎如何选择?Flink or Spark?
1.前言 目前实时计算的业务场景越来越多,实时计算引擎技术及生态也越来越成熟.以Flink和Spark为首的实时计算引擎,成为实时计算场景的重点考虑对象.那么,今天就来聊一聊基于Kafka的实时计算引擎如何选择?Flink or Spark? 2.为何需要实时计算? 根据IBM的统计报告显示,过去两年内,当今世界上90%的数据产生源于新设备.传感器以及技术的出现,数据增长率也会为此加速.而从技术上将,这意味着大数据领域,处理这些数据将变得更加复杂和具有挑战性.例如移动应用广告.欺诈检测.出租车预
基于Kafka的实时计算引擎如何选择?(转载)
1.前言 目前实时计算的业务场景越来越多,实时计算引擎技术及生态也越来越成熟.以Flink和Spark为首的实时计算引擎,成为实时计算场景的重点考虑对象.那么,今天就来聊一聊基于Kafka的实时计算引擎如何选择?Flink or Spark? 2.为何需要实时计算? 根据IBM的统计报告显示,过去两年内,当今世界上90%的数据产生源于新设备.传感器以及技术的出现,数据增长率也会为此加速.而从技术上将,这意味着大数据领域,处理这些数据将变得更加复杂和具有挑战性.例如移动应用广告.欺诈检测.出租车预
Uber如何搭建一个基于Kafka的跨数据中心复制平台 原创: 徐宏亮 AI前线 今天
Uber如何搭建一个基于Kafka的跨数据中心复制平台 原创: 徐宏亮 AI前线 今天
(数据科学学习手札74)基于geopandas的空间数据分析——数据结构篇
本文对应代码已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 geopandas是建立在GEOS.GDAL.PROJ等开源地理空间计算相关框架之上的,类似pandas语法风格的空间数据分析Python库,其目标是尽可能地简化Python中的地理空间数据处理,减少对Arcgis.PostGIS等工具的依赖,使得处理地理空间数据变得更加高效简洁,打造纯Python式的空间数据处理工作流.本系列文章就将围绕geo
(数据科学学习手札75)基于geopandas的空间数据分析——坐标参考系篇
本文对应代码已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 在上一篇文章中我们对geopandas中的数据结构展开了较为全面的学习,其中涉及到面积长度等计算的过程中提到了具体的计算结果与所选择的投影坐标系关系密切,投影坐标系选择的不恰当会带来计算结果的偏差,直接关乎整个分析过程的有效与否. 作为基于geopandas的空间数据分析系列文章的第二篇,通过本文你将会学习到geopandas中的坐标参考系管理.
(数据科学学习手札77)基于geopandas的空间数据分析——文件IO
本文对应代码和数据已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 在上一篇文章中我们对geopandas中的坐标参考系有了较为深入的学习,而在日常空间数据分析工作中矢量文件的读入和写出,是至关重要的环节. 作为基于geopandas的空间数据分析系列文章的第三篇,通过本文你将会学习到geopandas中的文件IO. 2 文件IO 2.1 矢量文件的读入 geopandas将fiona作为操纵矢量数据读写功
(数据科学学习手札78)基于geopandas的空间数据分析——基础可视化
本文对应代码和数据已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 通过前面的文章,我们已经对geopandas中的数据结构.坐标参考系以及文件IO有了较为深入的学习,在拿到一份矢量数据开始分析时,对其进行可视化无疑是探索了解数据阶段重要的步骤. 作为基于geopandas的空间数据分析系列文章的第四篇,通过本文你将会学习到基于geopandas的基础可视化. 2 基础可视化 geopandas使用matp
(数据科学学习手札79)基于geopandas的空间数据分析——深入浅出分层设色
本文对应代码和数据已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 通过前面的文章,我们已经对geopandas中的数据结构.坐标参考系.文件IO以及基础可视化有了较为深入的学习,其中在基础可视化那篇文章中我们提到了分层设色地图,可以对与多边形关联的数值属性进行分层,并分别映射不同的填充颜色,但只是开了个头举了个简单的例子,实际数据可视化过程中的分层设色有一套策略方法. 作为基于geopandas的空间数据
热门专题
netcore2.1 docker部署404
html和html5的区别是什么
james是用25发送的外网邮件么
c# quartz.NET 调用webapi控制器方法
快速查找word中的缩写
聚合链路负载分担原理
graphtool安装 conda
qq加群验证破解方法
numastat node1是0
postgresql-14.2-2安装教程
legendselectchanged事件覆盖默认的组件切换
ubuntu删除vue
js audio 播放多个音频文件
torch.optim.Adam 多个更新
ubuntu防火墙配置
sql如何判断时间是否在同一个小时内
网页加载慢,如何设置loging
java ClassLoader解密
redhat6.7可以用yum直接升级6.10
mxgraph自定义节点属性