Beam Search的问题 先解释一下什么要对Beam Search进行改进.因为Beam Search虽然比贪心强了不少,但还是会生成出空洞.重复.前后矛盾的文本.如果你有文本生成经验,一定对这些现象并不陌生.在语言模型还不像如今的BERT.GPT这么厉害的时候,这种现象更加明显. 没有经验也没关系,我们来看一个论文里面的例子.输入模型的引文(context) "The study, published in the Proceedings of the They were cattle c
Wiki定义:In computer science, beam search is a heuristic search algorithm that explores a graph by expanding the most promising node in a limited set. Beam search is an optimization of best-first search that reduces its memory requirements. Best-first
decoder.py """ 实现解码器 """ import heapq import torch.nn as nn import config import torch import torch.nn.functional as F import numpy as np import random from chatbot.attention import Attention class Decoder(nn.Module): def __i
深度学习广泛应用于各个领域.基于transformer的预训练模型(gpt/bertd等)基本已统治NLP深度学习领域,可见transformer的重要性.本文结合<Attention is all you need>Harvard 的代码<Annotated Transformer>深入理解transformer模型. Harvard的代码在python3.6 torch 1.0.1 上跑不通,本文做了很多修改.修改后的代码地址:Transformer. 1 模型的思想 Tran