首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
对hadoop中ToPN进行分析总结
2024-10-27
hadoop与spark的处理技巧(一)Top N处理技巧
1.MR的topN处理方案,假设所有输入Key都唯一 2.MR的topN处理方案,假设输入Key不唯一 3.spark的topN处理方案,假设所有输入Key都唯一,不使用top()和takeOrdered()函数 4.spark的topN处理方案,假设输入Key不唯一,不使用top()和takeOrdered()函数 5.spark的topN处理方案,假设输入Key不唯一,使用takeOrdered()函数
深度分析如何在Hadoop中控制Map的数量
深度分析如何在Hadoop中控制Map的数量 guibin.beijing@gmail.com 很多文档中描述,Mapper的数量在默认情况下不可直接控制干预,因为Mapper的数量由输入的大小和个数决定.在默认情况下,最终input 占据了多少block,就应该启动多少个Mapper.如果输入的文件数量巨大,但是每个文件的size都小于HDFS的blockSize,那么会造成 启动的Mapper等于文件的数量(即每个文件都占据了一个block),那么很可能造成启动的Mapper数量超出限制而导
深度分析如何在Hadoop中控制Map的数量(摘抄)
很多文档中描述,Mapper的数量在默认情况下不可直接控制干预,因为Mapper的数量由输入的大小和个数决定.在默认情况下,最终input占据了多少block,就应该启动多少个Mapper.如果输入的文件数量巨大,但是每个文件的size都小于HDFS的blockSize,那么会造成启动的Mapper等于文件的数量(即每个文件都占据了一个block),那么很可能造成启动的Mapper数量超出限制而导致崩溃.这些逻辑确实是正确的,但都是在默认情况下的逻辑.其实如果进行一些客户化的设置,就可以控制了.
Hadoop 中 IPC 的源码分析
最近开始看 Hadoop 的一些源码,展开hadoop的源码包,各个组件分得比较清楚,于是开始看一下 IPC 的一些源码. IPC模块,也就是进程间通信模块,如果是在不同的机器上,那就可以理解为 RPC 了,也就是远程调用.事实上, hadoop 中的 IPC 也就是基于 RPC 实现的. 使用 sloccount 统计一下 ipc 包中代码的行数,一共是 2884 行.也就是说,IPC 作为hadoop的基础组件,仅仅用了不到3000行的代码,就完成得稳定且富有效率. IPC 中的关键类关系:
Hadoop 中疑问解析
Hadoop 中疑问解析 FAQ问题剖析 一.HDFS 文件备份与数据安全性分析1 HDFS 原理分析1.1 Hdfs master/slave模型 hdfs采用的是master/slave模型,一个hdfs cluster包含一个NameNode和一些列的DataNode,其中NameNode充当的是master的角色,主要负责管理hdfs文件系统,接受来自客户端的请求:DataNode主要是用来存储数据文件,hdfs将一个文件分割成一个或多个的block,这些block可能存储在一个Data
Hadoop中的各种排序
本篇博客是金子在学习hadoop过程中的笔记的整理,不论看别人写的怎么好,还是自己边学边做笔记最好了. 1:shuffle阶段的排序(部分排序) shuffle阶段的排序可以理解成两部分,一个是对spill进行分区时,由于一个 分区包含多个key值,所以要对分区内的<key,value>按照key进行排序,即key值相同的一 串<key,value>存放在一起,这样一个partition内按照key值整体有序了. 第二部分并不是排序,而是进行merge,merge有两次,一次是ma
1 weekend110的复习 + hadoop中的序列化机制 + 流量求和mr程序开发
以上是,weekend110的yarn的job提交流程源码分析的复习总结 下面呢,来讲weekend110的hadoop中的序列化机制 1363157985066 13726230503 00-FD-07-A4-72-B8:CMCC 120.196.100.82 i02.c.aliimg.com 24 27 2481 24681 200 1363157995052 13826
hadoop中联结不同来源数据
装载自http://www.cnblogs.com/dandingyy/archive/2013/03/01/2938462.html 有时可能需要对来自不同源的数据进行综合分析: 如下例子: 有Customers文件,每个记录3个域:Custom ID, Name, Phone Number Customers Orders 1,Stephanie Leung,555-555-5555 3,A,12.95,02-Jun-2008 2,Edward Kim,123-456-789
[Hadoop] - TaskTracker源码分析
在Hadoop1.x版本中,MapReduce采用master/salve架构,TaskTracker就是这个架构中的slave部分.TaskTracker以服务组件的形式存在,负责任务的执行和任务状态的汇报.TaskTracker是hadoop集群中运行在各个节点上的服务.扮演着“通信交通”的角色,是JobTracker和Task之间的“沟通桥梁”,一方面,TaskTracker发送心跳信息到JobTracker,并接收和执行返回的各种任务命令,比如运行任务(launchTaskAction)
Hadoop RPC源码分析
Hadoop RPC源码分析 上一篇文章http://www.cnblogs.com/dycg/p/rpc.html 讲了Hadoop RPC的使用方法,这一次我们从demo中一层层进行分析. RPC说白了,就3个核心,交互协议.服务端.客户端. 在Hadoop RPC(hadoop-common-2.4.jar)中也是这样 交互协议 org.apache.hadoop.ipc.VersionedProtocol ,所有协议的父类 其实就2个方法,版本与签名.不同版本与签名的协议,就算同一个类名
hadoop中实现java网络爬虫
这一篇网络爬虫的实现就要联系上大数据了.在前两篇java实现网络爬虫和heritrix实现网络爬虫的基础上,这一次是要完整的做一次数据的收集.数据上传.数据分析.数据结果读取.数据可视化. 需要用到 Cygwin:一个在windows平台上运行的类UNIX模拟环境,直接网上搜索下载,并且安装: Hadoop:配置Hadoop环境,实现了一个分布式文件系统(Hadoop Distributed File System),简称HDFS,用来将收集的数据直接上传保存到HDFS,然后用MapReduce
Hadoop namenode启动瓶颈分析
NameNode启动过程详细剖析 NameNode中几个关键的数据结构 FSImage Namenode会将HDFS的文件和目录元数据存储在一个叫fsimage的二进制文件中,每次保存fsimage之后到下次保存之间的所有hdfs操作,将会记录在editlog文件中,当editlog达到一定的大小(bytes,由fs.checkpoint.size参数定义)或从上次保存过后一定时间段过后(sec,由fs.checkpoint.period参数定义),namenode会重新将内存中对整个HDFS的
hadoop中map和reduce的数量设置
hadoop中map和reduce的数量设置,有以下几种方式来设置 一.mapred-default.xml 这个文件包含主要的你的站点定制的Hadoop.尽管文件名以mapred开头,通过它可以控制用户maps和 reduces的默认的设置. 下面是一些有用变量: 名字 含义 dfs.block.size 分布式文件系统中每个数据块的大小 (bytes) io.sort.factor 合并排序时每层输入的文件数 io.sort.mb 排序输入的reduce时缓存大小 io.file.buffe
Hadoop中Writable类之四
1.定制Writable类型 Hadoop中有一套Writable实现,例如:IntWritable.Text等,但是,有时候可能并不能满足自己的需求,这个时候,就需要自己定制Writable类型. 定制分以下几步: 需要实现WritableComparable接口,因为Writable常常作为健值对出现,而在MapReduce中,中间有个排序很重要,因此,Hadoop中就让Writable实现了WritableComparable 需要实现WritableComparable的write().
Hadoop中Writable类之二
1.ASCII.Unicode.UFT-8 在看Text类型的时候,里面出现了上面三种编码,先看看这三种编码: ASCII是基于拉丁字母的一套电脑编码系统.它主要用于显示现代英语和其他西欧语言.它是现今最通用的单字节编码系统,并等同于国际标准ISO/IEC 646.ASCII是7位字符集,是美国标准信息交换代码的缩写,为美国英语通信所设计.它由128个字符组成,包括大小写字母.数字0-9.标点符号.非打印字符(换行副.制表符等4个)以及控制字符(退格.响铃等)组成.从定义,很明显,单字节编码,现
hadoop中OutputFormat 接口的设计与实现
OutputFormat 主要用于描述输出数据的格式,它能够将用户提供的 key/value 对写入特定格式的文件中. 本文将介绍 Hadoop 如何设计 OutputFormat 接口 , 以及一些常用的OutputFormat 实现. 1.旧版 API 的 OutputFormat 解析 如图所示, 在旧版 API 中,OutputFormat 是一个接口,它包含两个方法: RecordWriter<K, V> getRecordWriter(FileSystem ignored, Job
hadoop中InputFormat 接口的设计与实现
InputFormat 主要用于描述输入数据的格式, 它提供以下两个功能.❑数据切分:按照某个策略将输入数据切分成若干个 split, 以便确定 Map Task 个数以及对应的 split.❑为 Mapper 提供输入数据: 给定某个 split, 能将其解析成一个个 key/value 对.本文将介绍 Hadoop 如何设计 InputFormat 接口,以及提供了哪些常用的 InputFormat实现. 1 .旧版 API 的 InputFormat 解析 如图所示: 在旧版 API 中,
Hadoop中的控制脚本
1.提出问题 在上篇博文中,提到了为什么要配置ssh免密码登录,说是Hadoop控制脚本依赖SSH来执行针对整个集群的操作,那么Hadoop中控制脚本都是什么东西呢?具体是如何通过SSH来针对整个集群的操作?网上完全分布模式下Hadoop的搭建很多,可是看完后,真的了解吗?为什么要配置Hadoop下conf目录下的masters文件和slaves文件,masters文件里面主要记录的是什么东西,slaves文件中又记录的是什么东西,masters文件和slaves文件都有什么作用?好,我看到过一
hadoop之WordCount源代码分析
//近期在研究hadoop.第一个想要要開始研究的必然是wordcount程序了.看了<hadoop应用开发实战解说>结合自己的理解,对wordcount的源代码进行分析. <pre name="code" class="java"> package org.apache.hadoop.mapred; import java.io.IOException; import java.util.ArrayList; import java.uti
YARN中的失败分析
YARN中的失败分析 对于在YARN中运行的MapReduce程序,需要考虑以下几种实体的失败任务.application master.节点管理器.资源管理器 1. 任务运行失败 任务运行失败类似于MapReduce1的情况.JVM的运行时异常和突然退出被反馈给application master,该任务尝试被标记为失败.类似的,通过在umbilical channel上的ping缺失(由mapreduce.task.time设定超时值),application master会注意到挂起的任务
Hadoop中的Partitioner浅析
转自:http://blog.csdn.net/b1198103958/article/details/47169105 Hadoop里面的MapReduce编程模型,非常灵活,大部分环节我们都可以重写它的API,来灵活定制我们自己的一些特殊需求. 今天散仙要说的这个分区函数Partitioner,也是一样如此,下面我们先来看下Partitioner的作用: 对map端输出的数据key作一个散列,使数据能够均匀分布在各个reduce上进行后续操作,避免产生热点区. 大部分情况下,我们都会使用默认
热门专题
windows计划任务和批处理的组合
PreparedStatement常用方法
geminiscrollbar 样式设置
codesoft黑色背景白色字体
datetimepicker只显示年月日
sockettool中文乱码
Docker搭建大数据集群
axios 获取完成返回头
Azure数据工厂是什么
php综合应用 Laravel,开发“个人博客”程序数据库
将short强制转换为char
wpf TreeView控件用法
存储过程被锁 查询 lock time out
java应用程序启动失败mac
如何用Python存储数据
linux 部署一个新端口怎么操作
pdf导入ps如何修改后保存
arcgis影像拼接完色彩有差异
android Activity切换动画
Java 识别图片文字