一.KNN算法描述 KNN(K Near Neighbor):找到k个最近的邻居,即每个样本都可以用它最接近的这k个邻居中所占数量最多的类别来代表.KNN算法属于有监督学习方式的分类算法,所谓K近邻算法,就是给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例(就是上面提到的K个邻居),如果这K个实例的多数属于某个类,就将该输入实例分类到这个类中,如下图所示. 上图中有两种不同类别的样本数据,分别用蓝色正
邻近算法,或者说K最近邻(kNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一.所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代表.kNN算法的核心思想是如果一个样本在特征空间中的k个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性. 数据预备,这里使用random函数生成10*2的矩阵作为两列特征值,1个10个元素数组作为类别值 import numpy as npimport ma
KNN的函数写法 import numpy as np from math import sqrt from collections import Counter def KNN_classify(k,X_train,y_train,x): assert 1<=k<X_train.shape[0],"k must be valid" assert X_train.shape[0] == y_train.shape[0],\ "the size of X_train