首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
树 -> prufer 序列 python
2024-10-21
树的计数 + prufer序列与Cayley公式 学习笔记
首先是 Martrix67 的博文:http://www.matrix67.com/blog/archives/682 然后是morejarphone同学的博文:http://blog.csdn.net/morejarphone/article/details/50677172 因为是偶然翻了他的这篇博文,然后就秒会了. prufer数列,可以用来解一些关于无根树计数的问题. prufer数列是一种无根树的编码表示,对于一棵n个节点带编号的无根树,对应唯一一串长度为n-1的prufer编码. (
BSOJ 5445 -- 【2018雅礼】树 prufer序列 dp
BSOJ在哪我也不知道 没有链接. 对于有标号无根树的统计和有度数限制 一般采用prufer序列. 根据prufer序列 容易知道 某个点的出现次数+1为当前点的度数. 对于这道题 考虑设f[i][j]表示前i个点填了prufer序列j个位置时的方案数. 不过这样做存在的问题是 最后我们要求恰好k个点形成的长度为k-2的prufer序列的方案数. 如果设这个状态 这个状态到底有多少个点我们无从得知. 所以需要再开一维状态 表示当前使用了k个点. 转移 :由于状态相当于答案 对于j个位置时相当于只
BSOJ 5553 wangyurzee的树 prufer序列 容斥
BSOJ我也不知道在哪. 容易想到容斥. 考虑不合法的方案 想到强制某个点的度数为限制即可. 这样就变成了了总方案-一个不合法+两个不合法-3个......的模型了. 坑点 当强制两个相同的点时 方案数为0. 当 序列长度>n-2的时候 方案数为0. 注意一些边界条件啥的.这样的话利用爆搜就很好写了. const ll MAXN=1000010; ll n,len,m; ll ans,fac[MAXN],inv[MAXN]; ll w[MAXN],du[MAXN],vis[MAXN]; inli
BZOJ 1211 HNOI2004 树的计数 Prufer序列
题目大意:给定一棵树中全部点的度数,求有多少种可能的树 Prufer序列.详细參考[HNOI2008]明明的烦恼 直接乘会爆long long,所以先把每一个数分解质因数.把质因数的次数相加相减.然后再乘起来 注意此题无解须要输出0 当n!=1&&d[i]==0时 输出0 当Σ(d[i]-1)!=n-2时输出0 写代码各种脑残--竟然直接算了n-2没用阶乘-- #include<cstdio> #include<cstring> #include<iostre
$Prufer$序列
\(Prufer\)序列 \(Prufer\)序列与树的相互转换: 树->\(Prufer\)序列 找到一个编号最小的叶子结点,把这个点删掉并且把跟他连着的那个点的编号加入\(Prufer\)序列. \(Prufer\)序列->树 设集合\(S={1,\cdots,n}\) 找到一个不在\(Prufer\)序列中且在\(S\)中的数,将它与\(Prufer\)序列中的第一个元素连边,并将这个数和\(Prufer\)序列的第一个元素删掉. 最后\(S\)会剩下最后两个元素,把这两个元素连边. 性
【洛谷2290】[HNOI2004] 树的计数(Python+利用prufer序列结论求解)
点此看题面 大致题意: 给定每个点的度数,让你求有多少种符合条件的无根树. \(prufer\)序列 这显然是一道利用\(prufer\)序列求解的裸题. 考虑到由\(prufer\)序列得到的结论:对于给定度数为\(d_{1\sim n}\)的一棵无根树共有\(\frac{(n-2)!}{\prod_{i=1}^n(d_i-1)!}\)种情况. 套公式即可. 高精/质因数分解/\(Python\) 等等,答案小于\(10^{17}\)? 这看似在\(long\ long\)范围内,但是我们前面
【洛谷2624】[HNOI2008] 明明的烦恼(Python+利用prufer序列结论求解)
点此看题面 大致题意: 给你某些点的度数,其余点度数任意,让你求有多少种符合条件的无根树. \(prufer\)序列 一道弱化版的题目:[洛谷2290][HNOI2004] 树的计数. 这同样也是一道利用\(prufer\)序列求解的题. 还是考虑到由\(prufer\)序列得到的结论:对于给定度数为\(d_{1\sim n}\)的一棵无根树共有\(\frac{(n-2)!}{\prod_{i=1}^n(d_i-1)!}\)种情况. 但这次就不能直接套公式了. 推式子 考虑对于已知度数的点,设其
bzoj1211: prufer序列 | [HNOI2004]树的计数
题目大意: 告诉你树上每个节点的度数,让你构建出这样一棵树,问能够构建出树的种树 这里注意数量为0的情况,就是 当 n=1时,节点度数>0 n>1时,所有节点度数相加-n!=n-2 可以通过通过除了根,必然有n-1个节点作为上一个节点的儿子来理解 然后通过学习prufer序列可知 每一颗树都能够建成唯一的序列,这里的n-2个数就是任意插入到prufer序列中,这很明显就是一个排列,那么之后就是计算 ans = (n-2)!/(w[1]!*w[2]!..w[n]!) w[i]表示i节点上的度数减
【BZOJ 1211】 1211: [HNOI2004]树的计数 (prufer序列、计数)
1211: [HNOI2004]树的计数 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2468 Solved: 868 Description 一个有n个结点的树,设它的结点分别为v1, v2, …, vn,已知第i个结点vi的度数为di,问满足这样的条件的不同的树有多少棵.给定n,d1, d2, …, dn,编程需要输出满足d(vi)=di的树的个数. Input 第一行是一个正整数n,表示树有n个结点.第二行有n个数,第i个数表示di,即
Prufer序列与树的计数(坑)
\(prufer\)序列: 无根树转\(prufer\)序列: 不断找编号最小的叶子节点,删掉并在序列中加入他相连的节点. \(prufer\)转无根树: 找到在目前\(prufer\)序列中未出现且未使用的编号最小的的节点与当前位相连,当前位从\(prufer\)序列中删除,节点标为已使用,剩余最后两个未使用的节点相连. 性质: \(1.prufer\)序列中某个编号出现的次数就等于这个编号的节点在无根树中的度数-1. \(2.\)一棵n个节点的无根树唯一地对应了一个长度为\(n-2\)的数列
【BZOJ1005/1211】[HNOI2008]明明的烦恼/[HNOI2004]树的计数 Prufer序列+高精度
[BZOJ1005][HNOI2008]明明的烦恼 Description 自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树? Input 第一行为N(0 < N < = 1000),接下来N行,第i+1行给出第i个节点的度数Di,如果对度数不要求,则输入-1 Output 一个整数,表示不同的满足要求的树的个数,无解输出0 Sample Input 3 1 -1 -1 Sample Outp
[HNOI2004]树的计数 BZOJ 1211 prufer序列
题目描述 输入输出格式 输入格式: 输入文件第一行是一个正整数n,表示树有n个结点.第二行有n个数,第i个数表示di,即树的第i个结点的度数.其中1<=n<=150,输入数据保证满足条件的树不超过10^17个. 输出格式: 输出满足条件的树有多少棵. 输入输出样例 输入样例#1: 复制 4 2 1 2 1 输出样例#1: 复制 2首先不知道prufer序列的可以学一下:https://blog.csdn.net/update7/article/details/77587329知道以后,其实就是
Luogu P2290 [HNOI2004]树的计数 Prufer序列+组合数
最近碰了$prufer$ 序列和组合数..于是老师留了一道题:P2624 [HNOI2008]明明的烦恼 qwq要用高精... 于是我们有了弱化版:P2290 [HNOI2004]树的计数(考一样的可还行OvO) 首先前置知识:$Prufer序列$ 然后,因为对于一个$ Prufer $序列有$n-2$ 项,而每个点的度数-1是这个点在$ Prufer$ 序列中出现的次数 所以...这不是多重集的排列吗(不懂多重集?) 所以我们成功了一半(雾) 在计算时会爆$ long \space long
树的计数 Prufer序列+Cayley公式
先安利一发.让我秒懂.. 第一次讲这个是在寒假...然而当时秦神太巨了导致我这个蒟蒻自闭+颓废...早就忘了这个东西了... 结果今天老师留的题中有两道这种的:Luogu P4981 P4430 然后决定了解一下... 一.Prufer序列 Prufer序列,可以用来解一些关于无根树计数的问题. Prufer序列是一种无根树的编码表示,对于一棵n个节点带编号的无根树,对应唯一一串长度为n-1的Prufer编码,这性质很好. 1.无根树转化为Prufer序列 首先定义无根树中度数为1的节点是叶子节
bzoj1211: [HNOI2004]树的计数(prufer序列+组合数学)
1211: [HNOI2004]树的计数 题目:传送门 题解: 今天刚学prufer序列,先打几道简单题 首先我们知道prufer序列和一颗无根树是一一对应的,那么对于任意一个节点,假设这个节点的度数为k,那么在prufer序列里面这个节点就会出现k-1次 (反过来也同理成立) 那么具体的原因这里有解释: 对于任意一个节点在prufer序列里出现一次的话,那么就表示我有一个孩子被删了,那么少了的一次去哪里了呢,因为每次加进去的都是父亲节点,那么少的肯定就是我自己连出去的一条边啊... 知道了这个
树的计数 + prufer序列与Cayley公式(转载)
原文出处:https://www.cnblogs.com/dirge/p/5503289.html 树的计数 + prufer序列与Cayley公式 学习笔记(转载) 首先是 Martrix67 的博文:http://www.matrix67.com/blog/archives/682 然后是morejarphone同学的博文:http://blog.csdn.net/morejarphone/article/details/50677172 因为是偶然翻了他的这篇博文,然后就秒会了. pruf
[HNOI2004][bzoj1211] 树的计数(prufer序列)
1211: [HNOI2004]树的计数 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3432 Solved: 1295[Submit][Status][Discuss] Description 一个有n个结点的树,设它的结点分别为v1, v2, …, vn,已知第i个结点vi的度数为di,问满足这样的条件的不同的树有多少棵.给定n,d1, d2, …, dn,编程需要输出满足d(vi)=di的树的个数. Input 第一行是一个正整数n,表
bzoj1211树的计数 x bzoj1005明明的烦恼 题解(Prufer序列)
1211: [HNOI2004]树的计数 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3432 Solved: 1295[Submit][Status][Discuss] Description 一个有n个结点的树,设它的结点分别为v1, v2, …, vn,已知第i个结点vi的度数为di,问满足这样的条件的不同的树有多少棵.给定n,d1, d2, …, dn,编程需要输出满足d(vi)=di的树的个数. Input 第一行是一个正整数n,表
【JZOJ5068】【GDSOI2017第二轮模拟】树 动态规划+prufer序列
题面 有n个点,它们从1到n进行标号,第i个点的限制为度数不能超过A[i]. 现在对于每个s (1 <= s <= n),问从这n个点中选出一些点组成大小为s的有标号无根树的方案数. 100%的数据:n <= 100 100 prufer序列 每个大小为n,有标号无根树都可以表示成一个长度为(n-2)且取值在[1,n]的序列. 这个序列就叫prufer序列. 树转prufer序列 1.每次查找一个标号最小且度数为一的点,使与之相连的点的编号加入序列尾: 2.删除树中的这个点. prufe
2021.07.18 P2290 树的计数(prufer序列、组合数学)
2021.07.18 P2290 树的计数(prufer序列.组合数学) [P2290 HNOI2004]树的计数 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 重点: 1.prufer序列 2.多重集的全排列公式 \[ \frac{(n-2)!}{\prod_{i=1}^n (d_i-1)!} \] 多重集的全排列 - Tekka - 博客园 (cnblogs.com) 3.排列组合优化算法及组合数与杨辉三角的关系 (4条消息) 杨辉三角与组合数_Bell的博客-CSDN博
热门专题
nodejs 执行shell 命令
运行vue项目如何请求本地的node项目接口
textview怎么实时刷新里的本文
戴尔电脑bootmgr is missing
matlab 坐标点平移旋转
java根据创建时间字段排序
vue cli 写两个window.
nginx配置多个server在一个端口
sql 查询所有字段null
idea mvc 访问什么都是404
pip报错 is not support wheel on
visual studio 动态链接库没有指定lib目录
spring boot logback 只保留5个文件
python 构造cookie
下列关于JAVA异常类的描述,说法正确的有
js设置滚动条 为none
图形化展示go包依赖关系
java编译和打包的区别
securecrt经常断开
怎么把单数列和偶数列分开