首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
激活函数sigmoid 的gain
2024-11-03
激活函数——sigmoid函数(理解)
0 - 定义 $Sigmoid$函数是一个在生物学中常见的S型函数,也称为$S$型生长曲线.在信息科学中,由于其单增以及反函数单增等性质,$Sigmoid$函数常被用作神经网络的阈值函数,将变量映射到0,1之间. 其曲线如下图: 1 - 导数 $$\begin{align*}sigmoid^{'}(x)&=(\frac{1}{1+e^{-x}})^{'} \\&=\frac{1}{1+e^{-x}}e^{-x}(-1)\\&=\frac{e^{-x}}{(1+e^{-x})^2}\
激活函数Sigmoid、Tanh、ReLu、softplus、softmax
原文地址:https://www.cnblogs.com/nxf-rabbit75/p/9276412.html 激活函数: 就是在神经网络的神经元上运行的函数,负责将神经元的输入映射到输出端. 常见的激活函数包括Sigmoid.TanHyperbolic(tanh).ReLu. softplus以及softmax函数. 这些函数有一个共同的特点那就是他们都是非线性的函数.那么我们为什么要在神经网络中引入非线性的激活函数呢? 如果不用激励函数(其实相当于激励函数是f(x) = x),在这种情况下
深度学习原理与框架-神经网络架构 1.神经网络构架 2.激活函数(sigmoid和relu) 3.图片预处理(减去均值和除标准差) 4.dropout(防止过拟合操作)
神经网络构架:主要时表示神经网络的组成,即中间隐藏层的结构 对图片进行说明:我们可以看出图中的层数分布: input layer表示输入层,维度(N_num, input_dim) N_num表示输入层的样本个数, input_dim表示输入层的维度, 即变量的个数 hidden layer1 表示第一个隐藏层,维度(input_dim, hidden_dim1input_dim表示输入层的维度,hidden_dim1示隐藏层的维度 hidden layer2 表示第二个隐藏层,维度(hidd
神经网络激活函数sigmoid relu tanh 为什么sigmoid 容易梯度消失
https://blog.csdn.net/danyhgc/article/details/73850546 什么是激活函数 为什么要用 都有什么 sigmoid ,ReLU, softmax 的比较 如何选择 1. 什么是激活函数 如下图,在神经元中,输入的 inputs 通过加权,求和后,还被作用了一个函数,这个函数就是激活函数 Activation Function. 2. 为什么要用 如果不用激励函数,每一层输出都是上层输入的线性函数,无论神经网络有多少层,输出都是输入的线性组合.如果使
激活函数sigmoid、tanh、relu、Swish
激活函数的作用主要是引入非线性因素,解决线性模型表达能力不足的缺陷 sigmoid函数可以从图像中看出,当x向两端走的时候,y值越来越接近1和-1,这种现象称为饱和,饱和意味着当x=100和x=1000的映射结果是一样的,这种转化相当于将1000大于100的信息丢失了很多,所以一般需要归一化数据. softplus函数相比于relu函数更加平滑,会保存部分小于零的函数,但是计算量也更大了. relu函数在信号响应上有很多优势,但是仅仅在正向传播中,由于其对负值全部舍去很容易使模型输出全零而无法训
什么是sigmoid激活函数?
上面我们讲了引入激活函数的意义,激活函数有多种,下面我们拿一种激活函数sigmoid来做示例,其他的类似.sigmoid函数表达式如下: 它的函数曲线图是: 看到上面的函数曲线图,可以看出是一个sigmoid函数的特点就是当输入值从负无穷变到正无穷时,输出值在0和1之间,............. 文章转载自原文:https://blog.csdn.net/qq_44594249/article/details/100561953
ML(5)——神经网络1(神经元模型与激活函数)
上一章介绍了使用逻辑回归处理分类问题.尽管逻辑回归是个非常好用的模型,但是在处理非线性问题时仍然显得力不从心,下图就是一个例子: 线性模型已经无法很好地拟合上面的样本,所以选择了更复杂的模型,得到了复杂的分类曲线: 然而这个模型存在两个问题:过拟合和模型复杂度.过拟合问题可参考<ML(附录3)——过拟合与欠拟合>,这里重点讲模型复杂度. 还是非线性分类,现在将输入扩充为100个,为了拟合数据,我们构造了更多的特征: 约有 1002/2 = 5000个特征.由此看来,对于n个输入,二次项特征的个
激活函数,Batch Normalization和Dropout
神经网络中还有一些激活函数,池化函数,正则化和归一化函数等.需要详细看看,啃一啃吧.. 1. 激活函数 1.1 激活函数作用 在生物的神经传导中,神经元接受多个神经的输入电位,当电位超过一定值时,该神经元激活,输出一个变换后的神经电位值.而在神经网络的设计中引入了这一概念,来增强神经网络的非线性能力,更好的模拟自然界.所以激活函数的主要目的是为了引入非线性能力,即输出不是输入的线性组合. 假设下图中的隐藏层使用的为线性激活函数(恒等激活函数:a=g(z)),可以看出,当激活函数为线性激活函数时,
反向传播算法-损失函数&激活函数
在监督学习中,传统的机器学习算法优化过程是采用一个合适的损失函数度量训练样本输出损失,对损失函数进行优化求最小化的极值,相应一系列线性系数矩阵W,偏置向量b即为我们的最终结果.在DNN中,损失函数优化极值求解的过程一般采用梯度下降法.牛顿法或拟牛顿法等迭代方法来迭代完成.对DNN的损失函数用梯度下降法进行迭代优化求极小值的过程即为反向传播算法,可以使用多种损失函数和激活函数. 1. 均方差损失函数+Sigmoid激活函数 Sigmoid激活函数的表达式为: σ(z)的函数图像如下: 对于Sigm
Tensorflow 2.0 深度学习实战 —— 详细介绍损失函数、优化器、激活函数、多层感知机的实现原理
前言 AI 人工智能包含了机器学习与深度学习,在前几篇文章曾经介绍过机器学习的基础知识,包括了监督学习和无监督学习,有兴趣的朋友可以阅读< Python 机器学习实战 >.而深度学习开始只是机器学习的一分支领域,它更强调从连续的层中进行学习,这种层级结构中的每一层代表不同程序的抽象,层级越高,抽象程度越大.这些层主要通过神经网络的模型学习得到的,最大的模型会有上百层之多.而最简单的神经网络分为输入层,中间层(中间层往往会包含多个隐藏层),输出层.下面几篇文章将分别从前馈神经网络 FNN.卷积神
集成学习-xgboost
等同于xgboost是个准曲率很高的集成学习框架,在很多比赛中成绩优异. 大多数的集成学习都使用决策树作为基分类器,主要是因为本身要训练多个分类器,而决策树速度很快,总体时间相对较少. 决策树 在讲xgboost之前,先描述一下决策树,后面要用到这些符号 决策树是把输入x映射到一个叶节点中,这个过程我们记为q(x) 叶节点总数记为T,每个叶节点有个标签(分类)或者预测值(回归)w,即W=[w1,w2,...wT] 那么决策过程就是 f(x)=W[q(x)],记为wq(x) 决策树的复杂度 决策树
一文弄懂神经网络中的反向传播法——BackPropagation
最近在看深度学习的东西,一开始看的吴恩达的UFLDL教程,有中文版就直接看了,后来发现有些地方总是不是很明确,又去看英文版,然后又找了些资料看,才发现,中文版的译者在翻译的时候会对省略的公式推导过程进行补充,但是补充的又是错的,难怪觉得有问题.反向传播法其实是神经网络的基础了,但是很多人在学的时候总是会遇到一些问题,或者看到大篇的公式觉得好像很难就退缩了,其实不难,就是一个链式求导法则反复用.如果不想看公式,可以直接把数值带进去,实际的计算一下,体会一下这个过程之后再来推导公式,这样就会觉得很容
BP神经网络
秋招刚结束,这俩月没事就学习下斯坦福大学公开课,想学习一下深度学习(这年头不会DL,都不敢说自己懂机器学习),目前学到了神经网络部分,学习起来有点吃力,把之前学的BP(back-progagation)神经网络复习一遍加深记忆.看了许多文章发现一PPT上面写的很清晰,就搬运过来,废话不多说,直入正题: 单个神经元 神经网络是由多个"神经元"组成,单个神经元如下图所示: 这其实就是一个单层感知机,输入是由ξ1 ,ξ2 ,ξ3和Θ组成的向量.其中Θ为偏置(bias),σ为激活函数(tran
【Valse首发】CNN的近期进展与实用技巧(上)
作者:程程链接:https://zhuanlan.zhihu.com/p/21432547来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 深度学习大讲堂致力于推送人工智能,深度学习方面的最新技术,产品以及活动.请关注我们的知乎专栏! 一.DL基础理论 本页PPT给出了本节内容概要,我们从MCP神经元模型开始,首先回顾全连接层.卷积层等基础结构单元,Sigmoid等激活函数,Softmax等损失函数,以及感知机.MLP等经典网络结构.接下来,将介绍网络训练方法,包括
LSTM模型与前向反向传播算法
在循环神经网络(RNN)模型与前向反向传播算法中,我们总结了对RNN模型做了总结.由于RNN也有梯度消失的问题,因此很难处理长序列的数据,大牛们对RNN做了改进,得到了RNN的特例LSTM(Long Short-Term Memory),它可以避免常规RNN的梯度消失,因此在工业界得到了广泛的应用.下面我们就对LSTM模型做一个总结. 1. 从RNN到LSTM 在RNN模型里,我们讲到了RNN具有如下的结构,每个序列索引位置t都有一个隐藏状态$h^{(t)}$. 如果我们略去每层都有的$o^{(
学习笔记TF027:卷积神经网络
卷积神经网络(Convolutional Neural Network,CNN),可以解决图像识别.时间序列信息问题.深度学习之前,借助SIFT.HoG等算法提取特征,集合SVM等机器学习算法识别图像. SIFT,缩放.平移.旋转.视角转变.亮度调整畸变的一定程度内,具有不变性.有局限性,ImageNet ILSVRC比赛最好结果错误率在26%以上,常年难以突破. 卷积神经网络提取特征效果更好,分类训练时自动提取最有效特征.卷积神经网络CNN,降低图像数据预处理要求,避免复杂特征工程.CNN使用
深度学习:Keras入门(二)之卷积神经网络(CNN)
说明:这篇文章需要有一些相关的基础知识,否则看起来可能比较吃力. 1.卷积与神经元 1.1 什么是卷积? 简单来说,卷积(或内积)就是一种先把对应位置相乘然后再把结果相加的运算.(具体含义或者数学公式可以查阅相关资料) 如下图就表示卷积的运算过程: (图1) 卷积运算一个重要的特点就是,通过卷积运算,可以使原信号特征增强,并且降低噪音. 1.2 激活函数 这里以常用的激活函数sigmoid为例: 把上述的计算结果269带入此公式,得出f(x)=1 1.3 神经元 如图是一个人工神经元的模型: (
Keras:基于Theano和TensorFlow的深度学习库
catalogue . 引言 . 一些基本概念 . Sequential模型 . 泛型模型 . 常用层 . 卷积层 . 池化层 . 递归层Recurrent . 嵌入层 Embedding 1. 引言 Keras是一个高层神经网络库,Keras由纯Python编写而成并基Tensorflow或Theano 简易和快速的原型设计(keras具有高度模块化,极简,和可扩充特性) 支持CNN和RNN,或二者的结合 支持任意的链接方案(包括多输入和多输出训练) 无缝CPU和GPU切换 0x1: Kera
cs231n spring 2017 lecture4 Introduction to Neural Networks 听课笔记
1. Backpropagation:沿着computational graph利用链式法则求导.每个神经元有两个输入x.y,一个输出z,好多层这种神经元连接起来,这时候已知∂L/∂z,可以求出∂L/∂x = ∂L/∂z * ∂z/∂x,∂L/∂y = ∂L/∂z * ∂z/∂y.靠这种方式可以计算出最终的loss function相对于最开始的输入的导数. 这种方法的好处是,每个神经元都是很简单的运算(比如加.减.乘.除.指数.sigmoid等),它们导数的解析式是很容易求解的,用链式法则连乘
TensorFlow实战之实现自编码器过程
关于本文说明,已同步本人另外一个博客地址位于http://blog.csdn.net/qq_37608890,详见http://blog.csdn.net/qq_37608890/article/details/79352212. 本文根据最近学习TensorFlow书籍网络文章的情况,特将一些学习心得做了总结,详情如下.如有不当之处,请各位大拿多多指点,在此谢过. 一.相关概念 1.稀疏性(Sparsity)及稀疏编码(Sparse Coding) Sparsity 是当今机器学习领域中的一个
热门专题
next_day(sysdate, '星期日')01846
Unreal Engine4 动画状态机
运行服务器cmdlet
keras 版本修改
input 输入数据按回车查询数据
maven jpa 模块子模块找不到 -csdn
应输入endregion指令
sqlserver CONVERT日期
zgrab工具扫描特点
python http服务注册 consul
微信小程序开发 nginx
lvds 刷新率计算
stm32cubeide没有串口
delphi TStream 保存 文件
stringbuilder修改
promtail 更新每次都要重启吗
CSS 鼠標到達某個位置時產生動畫
zookeeper的故障有哪些
navicat 12 破解 navicat-keygen
Newtonsoft null转空