PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维. 在Scikit中运用PCA很简单: import numpy as np from sklearn import decomposition from sklearn import datasets iris = datasets.load_iris() X = iris.data y = i
PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维. 在Scikit中运用PCA很简单: import numpy as np from sklearn import decomposition from sklearn import datasets iris = datasets.load_iris() X = iris.data y = i
主成分分析(PCA)是一种基于变量协方差矩阵对数据进行压缩降维.去噪的有效方法,PCA的思想是将n维特征映射到k维上(k<n),这k维特征称为主元,是旧特征的线性组合,这些线性组合最大化样本方差,尽量使新的k个特征互不相关. 相关知识 介绍一个PCA的教程:A tutorial on Principal Components Analysis ——Lindsay I Smith 1.协方差 Covariance 变量X和变量Y的协方差公式如下,协方差是描述不同变量之间的相关关系,协方差>0时说
A tutorial on Principal Components Analysis 原著:Lindsay I Smith, A tutorial on Principal Components Analysis, February 26, 2002. 翻译:houchaoqun.时间:2017/01/18.出处:http://blog.csdn.net/houchaoqun_xmu | http://blog.csdn.net/Houchaoqun_XMU/article/details