代码如下所示: # -*- coding: utf-8 -*- #导入需要的包 import matplotlib.pyplot as plt from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.metrics import roc_auc_score from xgboost import XGBClassifier from xgboost import
1.输出XGBoost特征的重要性 from matplotlib import pyplot pyplot.bar(range(len(model_XGB.feature_importances_)), model_XGB.feature_importances_) pyplot.show() XGBoost 特征重要性绘图 也可以使用XGBoost内置的特征重要性绘图函数 # plot feature importance using built-in function from xgboo
在XGBoost中提供了三种特征重要性的计算方法: ‘weight’ - the number of times a feature is used to split the data across all trees. ‘gain’ - the average gain of the feature when it is used in trees ‘cover’ - the average coverage of the feature when it is used in trees 简单
show the code: # Plot training deviance def plot_training_deviance(clf, n_estimators, X_test, y_test): # compute test set deviance test_score = np.zeros((n_estimators,), dtype=np.float64) for i, y_pred in enumerate(clf.staged_predict(X_test)): test_s
在Matlab绘图过程中,尤其是需要将多个图绘制在相同的坐标轴中时,通常需要将不同的曲线设置成为不同的颜色.此外,为了直观,还需要给这张图标增添标题和图例.这篇文章展示了在Matlab的绘图窗口(figure)中设置曲线颜色.添加图例(legend)和标题(title)的方法. 在Matlab中,给曲线设定颜色可以采用plot函数实现.如下所示的语句中: plot(x, y, 'r'); 是以 x 变量为横坐标,y 变量为纵坐标绘制红色曲线.其中,颜色控制由 ‘r’实现.在Mat