首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
神经网络提特征加机器学习模型
2024-09-02
机器学习(ML)十一之CNN各种模型
深度卷积神经网络(AlexNet) 在LeNet提出后的将近20年里,神经网络一度被其他机器学习方法超越,如支持向量机.虽然LeNet可以在早期的小数据集上取得好的成绩,但是在更大的真实数据集上的表现并不尽如人意.一方面,神经网络计算复杂.虽然20世纪90年代也有过一些针对神经网络的加速硬件,但并没有像之后GPU那样大量普及.因此,训练一个多通道.多层和有大量参数的卷积神经网络在当年很难完成.另一方面,当年研究者还没有大量深入研究参数初始化和非凸优化算法等诸多领域,导致复杂的神经网络的训练通常较
深度学习原理与框架-猫狗图像识别-卷积神经网络(代码) 1.cv2.resize(图片压缩) 2..get_shape()[1:4].num_elements(获得最后三维度之和) 3.saver.save(训练参数的保存) 4.tf.train.import_meta_graph(加载模型结构) 5.saver.restore(训练参数载入)
1.cv2.resize(image, (image_size, image_size), 0, 0, cv2.INTER_LINEAR) 参数说明:image表示输入图片,image_size表示变化后的图片大小,0, 0表示dx和dy, cv2.INTER_LINEAR表示插值的方式为线性插值 2.image.get_shape[1:4].num_elements() 获得最后三个维度的大小之和 参数说明:image表示输入的图片 3. saver.save(sess, path, glob
吴裕雄 python 机器学习——数据预处理过滤式特征选取SelectPercentile模型
from sklearn.feature_selection import SelectPercentile,f_classif #数据预处理过滤式特征选取SelectPercentile模型 def test_SelectKBest(): X=[[1,2,3,4,5], [5,4,3,2,1], [3,3,3,3,3,], [1,1,1,1,1]] y=[0,1,0,1] print("before transform:",X) selector=SelectPercentile(s
吴裕雄 python 机器学习——数据预处理过滤式特征选取VarianceThreshold模型
from sklearn.feature_selection import VarianceThreshold #数据预处理过滤式特征选取VarianceThreshold模型 def test_VarianceThreshold(): X=[[100,1,2,3], [100,4,5,6], [100,7,8,9], [101,11,12,13]] selector=VarianceThreshold(1) selector.fit(X) print("Variances is %s"
GMIS 2017 大会陈雨强演讲:机器学习模型,宽与深的大战
https://blog.csdn.net/starzhou/article/details/72819374 2017-05-27 19:15:36 GMIS 2017 10 0 5 月 27 日,机器之心主办的为期两天的全球机器智能峰会(GMIS 2017)在北京 898 创新空间顺利开幕.中国科学院自动化研究所复杂系统管理与控制国家重点实验室主任王飞跃为本次大会做了开幕式致辞,他表示:「我个人的看法是再过几年,我们90%的工作是人工智能提供的,就像我们今天大部分工作是机器提供
Python 3 利用 Dlib 19.7 和 sklearn机器学习模型 实现人脸微笑检测
0.引言 利用机器学习的方法训练微笑检测模型,给一张人脸照片,判断是否微笑: 使用的数据集中69张没笑脸,65张有笑脸,训练结果识别精度在95%附近: 效果: 图1 示例效果 工程利用python 3 开发,借助Dlib进行 人脸嘴部20个特征点坐标(40维特征)的提取, 然后根据这 40维输入特征 和 1维特征输出(1代表有微笑 / 0代表没微笑)进行ML建模, 利用几种机器学习模型进行建模,达到一个二分类(分类有/无笑脸)的目的,然后分析模型识别精度和性能,并且可以识别给定图片的人脸是
Python 3 利用机器学习模型 进行手写体数字识别
0.引言 介绍了如何生成数据,提取特征,利用sklearn的几种机器学习模型建模,进行手写体数字1-9识别. 用到的四种模型: 1. LR回归模型,Logistic Regression 2. SGD随机梯度下降模型,Stochastic Gradient Descent 3. SVC支持向量分类模型,Support Vector Classification 4. MLP多层神经网络模型,Multi-Layer Perceptron 主要内容:生成手写体随机数1-9,生成单个png分类存入指定
R语言︱机器学习模型评价指标+(转)模型出错的四大原因及如何纠错
笔者寄语:机器学习中交叉验证的方式是主要的模型评价方法,交叉验证中用到了哪些指标呢? 交叉验证将数据分为训练数据集.测试数据集,然后通过训练数据集进行训练,通过测试数据集进行测试,验证集进行验证. 模型预测效果评价,通常用相对绝对误差.平均绝对误差.根均方差.相对平方根误差等指标来衡量. 只有在非监督模型中才会选择一些所谓"高大上"的指标如信息熵.复杂度和基尼值等等. 其实这类指标只是看起来老套但是并不"简单",<数据挖掘之道>中认为在监控.评估监督模型
使用ML.NET + ASP.NET Core + Docker + Azure Container Instances部署.NET机器学习模型
本文将使用ML.NET创建机器学习分类模型,通过ASP.NET Core Web API公开它,将其打包到Docker容器中,并通过Azure Container Instances将其部署到云中. 先决条件 本文假设您对Docker有一定的了解.构建和部署示例应用程序还需要以下软件/依赖项.重要的是要注意应用程序是在Ubuntu 16.04 PC上构建的,但所有软件都是跨平台的,应该适用于任何环境. Docker Azure CLI .NET Core 2.0 Docker Hub Accou
tensorflow机器学习模型的跨平台上线
在用PMML实现机器学习模型的跨平台上线中,我们讨论了使用PMML文件来实现跨平台模型上线的方法,这个方法当然也适用于tensorflow生成的模型,但是由于tensorflow模型往往较大,使用无法优化的PMML文件大多数时候很笨拙,因此本文我们专门讨论下tensorflow机器学习模型的跨平台上线的方法. 1. tensorflow模型的跨平台上线的备选方案 tensorflow模型的跨平台上线的备选方案一般有三种:即PMML方式,tensorflow serving方式,以及跨语言API方
用PMML实现机器学习模型的跨平台上线
在机器学习用于产品的时候,我们经常会遇到跨平台的问题.比如我们用Python基于一系列的机器学习库训练了一个模型,但是有时候其他的产品和项目想把这个模型集成进去,但是这些产品很多只支持某些特定的生产环境比如Java,为了上一个机器学习模型去大动干戈修改环境配置很不划算,此时我们就可以考虑用预测模型标记语言(Predictive Model Markup Language,以下简称PMML)来实现跨平台的机器学习模型部署了. 1. PMML概述 PMML是数据挖掘的一种通用的规范,它用统一的XML
为你的机器学习模型创建API服务
1. 什么是API 当调包侠们训练好一个模型后,下一步要做的就是与业务开发组同学们进行代码对接,以便这些‘AI大脑’们可以顺利的被使用.然而往往要面临不同编程语言的挑战,例如很常见的是调包侠们用Python训练模型,开发同学用Java写业务代码,这时候,Api就作为一种解决方案被使用. 简单地说,API可以看作是顾客与商家之间的联系方式.如果顾客以预先定义的格式提供输入信息,则商家将获得顾客的输入信息并向其提供结果. 从本质上讲,API非常类似于web应用程序,但它没有提供一个样式良好的HTML
Python 3 利用机器学习模型 进行手写体数字检测
0.引言 介绍了如何生成手写体数字的数据,提取特征,借助 sklearn 机器学习模型建模,进行识别手写体数字 1-9 模型的建立和测试. 用到的几种模型: 1. LR,Logistic Regression, (线性模型)中的逻辑斯特回归 2. Linear SVC,Support Vector Classification, (支持向量机)中的线性支持向量分类 3. MLPC,Multi-Layer Perceptron Classification, (神经网络)多层感知机分类 4
用PMML实现python机器学习模型的跨平台上线
python信用评分卡(附代码,博主录制) https://study.163.com/course/introduction.htm?courseId=1005214003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share 在机器学习用于产品的时候,我们经常会遇到跨平台的问题.比如我们用Python基于一系列的机器学习库训练了一个模型,但是有时候其他的产品和项目想把这个模型集成进去,但是这
使用Flask构建机器学习模型API
1. Python环境设置和Flask基础 使用"Anaconda"创建一个虚拟环境.如果你需要在Python中创建你的工作流程,并将依赖项分离出来,或者共享环境设置,"Anaconda"发行版是一个不错的选择. 安装here wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh bash Miniconda3-latest-Linux-x86_64.sh source
机器学习模型解释工具-Lime
本篇文章转载于LIME:一种解释机器学习模型的方法 该文章介绍了一种模型对单个样本解释分类结果的方法,区别于对整体测试样本的评价指标准确率.召回率等,Lime为具体某个样本的分类结果做出解释,直观地表明该模型为何做出如此预测. 动机:我们为什么要理解预测结果? 机器学习如今是非常火的一个话题.随着计算机在围棋等游戏中击败人类专家,许多人不禁要问机器是否也能胜任司机的工作,甚至是取代医生? 现在很多前沿的机器学习模型还是一个黑盒,几乎无法去感知它的内部工作状态.这就给我们带来了可信度的问题:我该相
MindSpore保存与加载模型
技术背景 近几年在机器学习和传统搜索算法的结合中,逐渐发展出了一种Search To Optimization的思维,旨在通过构造一个特定的机器学习模型,来替代传统算法中的搜索过程,进而加速经典图论等问题的求解.那么这里面就涉及到一个非常关键的工程步骤:把机器学习中训练出来的模型保存成一个文件或者数据库,使得其他人可以重复的使用这个已经训练出来的模型.甚至是可以发布在云端,通过API接口进行调用.那么本文的内容就是介绍给予MindSpore的模型保存与加载,官方文档可以参考这个链接. 保存模型
R语言︱机器学习模型评估方案(以随机森林算法为例)
笔者寄语:本文中大多内容来自<数据挖掘之道>,本文为读书笔记.在刚刚接触机器学习的时候,觉得在监督学习之后,做一个混淆矩阵就已经足够,但是完整的机器学习解决方案并不会如此草率.需要完整的评价模型的方式. 常见的应用在监督学习算法中的是计算平均绝对误差(MAE).平均平方差(MSE).标准平均方差(NMSE)和均值等,这些指标计算简单.容易理解:而稍微复杂的情况下,更多地考虑的是一些高大上的指标,信息熵.复杂度和基尼值等等. 本篇可以用于情感挖掘中的监督式算法的模型评估,可以与博客对着看:R语言
EntityFramework Core一劳永逸动态加载模型,我们要知道些什么呢?
前言 这篇文章源于一位问我的童鞋:在EntityFramework Core中如何动态加载模型呢?在学习EntityFramwork时关于这个问题已有对应园友给出答案,故没有过多研究,虽然最后解决了这位童鞋提出的问题,但是当我再次深入研究时,发现原来问题远没有这么简单,由此而引申出来的问题值得我花了一点时间去思考,个人感觉很有价值和必要,所以在此做下记录或许能够帮助到有需要的童鞋,研究EntityFramework Core动态加载模型的历程由此而开始,接下来跟随我的脚步一起去瞧瞧. Entit
斯坦福经典AI课程CS 221官方笔记来了!机器学习模型、贝叶斯网络等重点速查...
[导读]斯坦福大学的人工智能课程"CS 221"至今仍然是人工智能学习课程的经典之一.为了方便广大不能亲临现场听讲的同学,课程官方推出了课程笔记CheatSheet,涵盖4大类模型. 斯坦福大学的人工智能课程"CS 221",这门铁打的课程从2011年开始已经走过了8个年头,流水的讲师换了一批又一批,送走的毕业生一拨又一拨,至今仍然是人工智能学习的经典课程之一.目前2019年春季课程正在如火如荼的开展中. 这门课程是没有教科书的,所有内容都蕴含在讲师的教案以及课后作
使用pmml实现跨平台部署机器学习模型
一.概述 对于由Python训练的机器学习模型,通常有pickle和pmml两种部署方式,pickle方式用于在python环境中的部署,pmml方式用于跨平台(如Java环境)的部署,本文叙述的是pmml的跨平台部署方式. PMML(Predictive Model Markup Language,预测模型标记语言)是一种基于XML描述来存储机器学习模型的标准语言.如,对在Python环境中由sklearn训练得到的模型,通过sklearn2pmml模块可将它完整地保存为一个pmml格
热门专题
小程序 scroll-view 出现滚动卡顿解决
c#把xml属性放在checklistbox操作
4a访问是不是都要通过堡垒机
element ui实现多级表头
python远程执行popen卡住
类对象的非静态成员函数 是右值
centos 应用运维工具
银河麒麟 bundle安装
vue接口并发登录失效
customRender 渲染字体颜色
js递归实现深拷贝停止条件
quartz定时任务表达式 每隔5小时执行一次
Coco数据集是哪个公司的
Unity 过场景不被移除
.net 委托封装数据库
git merge本地代码
mysql workbench导出EXCLE
ubuntu 命令行 网络设置
git提交每次都需要密码
tp-link桥接设置