1. 早期C. Koch与S. Ullman的研究工作. 他们提出了非常有影响力的生物启发模型. C. Koch and S. Ullman . Shifts in selective visual attention: Towards the underlying neural circuitry. Human Neurobiology, 4(4):219-227, 1985. C. Koch and T. Poggio. Predicting the Visual World: Silenc
top-down visual saliency via joint CRF anddictionary learning 自顶向下的视觉显著性是使用目标对象的可判别表示和一个降低搜索空间的概率图来进行目标定位.一,提出了一个联合CRF和判别字典自顶向下的显著性模型.该模型建立在包含潜在变量的CRF的基础上,将稀疏编码作为潜在变量,对CRF调制的字典进行训练,同时训练具有稀疏编码的CRF,二,提出一种最大间隔方法,通过快速推理来训练模型. Bag of word(Bow)模型高度依赖于字典和采样
深度学*点云语义分割:CVPR2019论文阅读 Point Cloud Oversegmentation with Graph-Structured Deep Metric Learning 摘要 本文提出了一个新的超级学*框架,用于将三维点云过度分割为超点.本文将此问题转化为学*三维点的局部几何和辐射测量的深度嵌入,从而使物体边界呈现高对比度.嵌入计算使用轻量级神经网络在点的局部邻域上操作.最后,本文将点云过分集描述为一个与学*嵌入相关的图划分问题.这种新方法允许本文在密集的室内数据集(S3D
Neural activities in V1 create a bottom-up saliency map 本文证明了人类的初级视皮层可以在视觉信息加工的非常早期阶段,生成视觉显著图,用以引导空间选择性注意的分布.这一发现挑战了传统注意理论,相关成果公布在神经科学注明期刊Neuron杂志上. 文章的通讯作者是北京大学感知与智能教育部重点实验室方方教授,第一作者是心理学系博士生张喜淋.研究合作者包括伦敦大学学院(University College London)李兆平教授和中科院生物物理所周
Saliency Detection: A Spectral Residual Approach 题目:Saliency Detection: A Spectral Residual Approach 作者:Xiaodi Hou, Liqing Zhang 领域:显著性目标检测 类型:新视角, 新方法 概述 The ability of human visual system to detect visual saliency is extraordinarily fast and reliab
A Model of Saliency-Based Visual Attention for Rapid Scene Analysis 题目:A Model of Saliency-Based Visual Attention for Rapid Scene Analysis 作者:Laurent Itti, Christof Koch, and Ernst Niebur 领域:视觉显著性 类型:新问题,新方法 核心思想 从人类视觉心理学的角度入手来研究该问题,采用方法包含了两部分,一是提取显著
Deep 360 Pilot Learning a Deep Agent for Piloting through 360° Sports Videos 源码.数据集和视频演示 ego-centric(以自我为中心的) 背景: 看360°运动视频需要观察者连续选择视角,通过一系列的鼠标点击或头部运动 解决方案: 叫作deep 360 pilot的方法(基于深度学习的方式在360°运动视频里进行导航) 自动帮用户选择合适的视角的代理人 每一帧,代理人观察全景图,结合之前帧的视角得出下一个最合适的视
编者按:你是否曾经为如何创作和编辑一篇图文并茂.排版精美的文章而烦恼?或是为缺乏艺术灵感和设计思路而痛苦?AI技术能否在艺术设计中帮助到我们?今天我们为大家介绍的这篇论文,“Automatic Generation of Visual-Textual Presentation Layout”(图文排版的自动生成算法研究),刚刚被美国计算机学会会刊ACM Transactions on Multimedia Computing, Communications and Applications (T