Kalman Filter Cons: Kalman filtering is inadequate because it is based on the unimodal Gaussian distribution assumption, and it can't represent simultaneous alternative hypotheses. It works relatively poorly in clutter which causes the density to be
容错声明: ①题目选自https://acm.ecnu.edu.cn/,不再检查题目删改情况 ②所有代码仅代表个人AC提交,不保证解法无误 E0001 A+B Problem First AC: 2017-10-13 Latest Modification: 2018-02-28 #include<bits/stdc++.h> using namespace std; int a,b; int main() { cin>>a>>b; cout<<
基本介绍 Levenshtein距离是一种计算两个字符串间的差异程度的字符串度量(string metric).我们可以认为Levenshtein距离就是从一个字符串修改到另一个字符串时,其中编辑单个字符(比如修改.插入.删除)所需要的最少次数.俄罗斯科学家Vladimir Levenshtein于1965年提出了这一概念. 简单例子 从字符串“kitten”修改为字符串“sitting”只需3次单字符编辑操作,如下: sitten ( k -> s ) sittin ( e -> i ) s