最近在学习tf的神经网络算法,十多年没有学习过数学了,本来高中数学的基础,已经彻底还给数学老师了.所以我把各种函数.公式和推导当做黑盒子来用,理解他们能做到什么效果,至于他们是如何做到的,暂时不去深究,最多知道哪个公式的效果会比哪个更适合哪个场合. BP网络应该是最入门级的算法了. #用伪代码描述下大概如此 # 单层BP x = tf.placeholder(tf.float32,[None,256]) y = tf.placeholder(tf.float32,[None,10]) w = t
注: Scratch是一款由麻省理工学院(MIT) 设计开发的一款面向少年的简易编程工具.这里写链接内容 本文翻译自“IMPLEMENTING A NEURAL NETWORK FROM SCRATCH IN PYTHON – AN INTRODUCTION”,原文链接为这里写链接内容.并且,我在这里给出原文数学公式的推导和对原文一些概念的修正: 在这里,我将展示一种简单的三层神经网络,我不会详细推导出与本文有关的所有数学公式,我将我的想法以一种直观的形式展示出来