首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
Chebyshev算法
2024-11-02
切比雪夫定理(Chebyshev's theorem)与经验法则(Empirical Rule)
切比雪夫定理(Chebyshev's theorem):适用于任何数据集,而不论数据的分布情况如何. 与平均数的距离在z个标准差之内的数值所占的比例至少为(1-1/z2),其中z是大于1的任意实数. 至少75%的数据值与平均数的距离在z=2个标准差之内: 至少89%的数据值与平均数的距离在z=3个标准差之内: 至少94%的数据值与平均数的距离在z=4个标准差之内: 经验法则(Empirical Rule):需要数据符合正态分布. 大约68%的数据值与平均数的距离在1个标准差之内: 大约95%的数
深入浅出KNN算法(二) sklearn KNN实践
姊妹篇: 深入浅出KNN算法(一) 原理介绍 上次介绍了KNN的基本原理,以及KNN的几个窍门,这次就来用sklearn实践一下KNN算法. 一.Skelarn KNN参数概述 要使用sklearnKNN算法进行分类,我们需要先了解sklearnKNN算法的一些基本参数,那么这节就先介绍这些内容吧. def KNeighborsClassifier(n_neighbors = 5, weights='uniform', algorithm = '', leaf_size = '30', p =
算法(第四版)C# 习题题解——2.3
写在前面 整个项目都托管在了 Github 上:https://github.com/ikesnowy/Algorithms-4th-Edition-in-Csharp 查找更为方便的版本见:https://alg4.ikesnowy.com/ 这一节内容可能会用到的库文件有 Quick,同样在 Github 上可以找到. 善用 Ctrl + F 查找题目. 习题&题解 2.3.1 解答 2.3.2 解答 2.3.3 解答 N / 2 在快速排序中,一个元素要被交换,有以下两种情况 1.该元素是
机器学习笔记(5) KNN算法
这篇其实应该作为机器学习的第一篇笔记的,但是在刚开始学习的时候,我还没有用博客记录笔记的打算.所以也就想到哪写到哪了. 你在网上搜索机器学习系列文章的话,大部分都是以KNN(k nearest neighbors)作为第一篇入门的,因为这个算法实在是太简单了.简单到其实没啥可说的. 问题:已知正方形和三角形两种分类,现在来了个圆,问:应该归到正方形更合适还是三角形更合适? 算法的思想很朴素,假设我们有一个M*N的矩阵(M个样本,每个样本有N个特征).当我们来了一个新的样本test,我们要去判断这
Cordic算法简介
作者:桂. 时间:2017-08-14 19:22:26 链接:http://www.cnblogs.com/xingshansi/p/7359940.html 前言 CORDIC算法常用来求解信号的幅度与相位,它的优势在于借助:移位寄存器+加法器/减法器便可以实现求解,而无需乘法器.大大简化了运算.本文围绕CORDIC整理用到的知识,先做个引子,不定期更新. 一.CORDIC算法 CORDIC(Coordinate Rotation Digital Computer) 算法由Volder于1
(数据科学学习手札09)系统聚类算法Python与R的比较
上一篇笔者以自己编写代码的方式实现了重心法下的系统聚类(又称层次聚类)算法,通过与Scipy和R中各自自带的系统聚类方法进行比较,显然这些权威的快捷方法更为高效,那么本篇就系统地介绍一下Python与R各自的系统聚类算法: Python cluster是Scipy中专门用来做聚类的包,其中包括cluster.vq矢量量化包,里面封装了k-means方法,还包括cluster.hierarchy,里面封装了层次聚类和凝聚聚类的方法,本文只介绍后者中的层级聚类方法,即系统聚类方法,先从一个简单的小例
一看就懂的K近邻算法(KNN),K-D树,并实现手写数字识别!
1. 什么是KNN 1.1 KNN的通俗解释 何谓K近邻算法,即K-Nearest Neighbor algorithm,简称KNN算法,单从名字来猜想,可以简单粗暴的认为是:K个最近的邻居,当K=1时,算法便成了最近邻算法,即寻找最近的那个邻居. 用官方的话来说,所谓K近邻算法,即是给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例(也就是上面所说的K个邻居),这K个实例的多数属于某个类,就把该输入实例分类到这个类中. 如上图所示,有两类不同的样本数据,分别用蓝色的
02-18 scikit-learn库之k近邻算法
目录 scikit-learn库之k近邻算法 一.KNeighborsClassifier 1.1 使用场景 1.2 代码 1.3 参数详解 1.4 方法 1.4.1 kneighbors([X, n_neighbors, return_distance]) 1.4.2 kneighbors_graph([X, n_neighbors, mode]) 二.KNeighborsRegressor 三.RadiusNeighborsClassifier 四.RadiusNeighborsRegres
机器学习回顾篇(9):K-means聚类算法. slides
.caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px solid #000; } .table { border-collapse: collapse !important; } .table td, .table th { background-color: #fff !important; } .table-bordered th, .table-bordere
机器学习之K近邻算法
K 近邻 (K-nearest neighbor, KNN) 算法直接作用于带标记的样本,属于有监督的算法.它的核心思想基本上就是 近朱者赤,近墨者黑. 它与其他分类算法最大的不同是,它是一种"懒惰"的学习算法 (lazy learning),因为实际上它并没有"训练"的过程,也不产生一个真实意义上的"模型",而只是一字不差地将所有训练样本保存起来,等到需要对新样本进行分类的时候,将新样本与所有训练样本进行比较,找出与其距离最接近的 k 个样本,
Jacobi与SOR迭代法的实现与性能比较及均匀间距与Chebyshev插值的实现、性能分析及二者生成的插值误差比较
这篇文章给出(1)Jacobi与SOR迭代法的实现与性能比较及(2)均匀间距与Chebyshev插值的实现.性能分析及二者生成的插值误差比较,给出完整的实现代码,没有进行性能优化,仅供参考. (1)Jacobi与SOR迭代法的实现与性能比较 一.举例计算 给出线性方程组: 其中n=100或者n=1000(任选一种,在本报告测试中,选取了n=100),使用Jacobi迭代法和SOR迭代法(=1,1.25,1.5)解此方程,计算结果精确到小数点后8位,结果输出小数点后至少12位,报告所需要的步数和误
机器学习——K-Means算法
1 基础知识 相似度或距离 假设有 $m$ 个样本,每个样本由 $n$ 个属性的特征向量组成,样本合集 可以用矩阵 $X$ 表示 $X=[x_{ij}]_{mn}=\begin{bmatrix}x_{11}&x_{12} & ... &x_{1n} \\x_{21}&x_{22} & ... &x_{2n} \\...& ... & ...& ...\\x_{m1}&x_{m2} & ...&x_{mn}
【Python机器学习实战】聚类算法(2)——层次聚类(HAC)和DBSCAN
层次聚类和DBSCAN 前面说到K-means聚类算法,K-Means聚类是一种分散性聚类算法,本节主要是基于数据结构的聚类算法--层次聚类和基于密度的聚类算法--DBSCAN两种算法. 1.层次聚类 下面这样的结构应该比较常见,这就是一种层次聚类的树结构,层次聚类是通过计算不同类别点的相似度创建一颗有层次的树结构,在这颗树中,树的底层是原始数据点,顶层是一个聚类的根节点. 创建这样一棵树的方法有自底向上和自顶向下两种方式. 下面介绍一下如何利用自底向上的方式的构造这样一棵树: 为了便于说明,假
B树——算法导论(25)
B树 1. 简介 在之前我们学习了红黑树,今天再学习一种树--B树.它与红黑树有许多类似的地方,比如都是平衡搜索树,但它们在功能和结构上却有较大的差别. 从功能上看,B树是为磁盘或其他存储设备设计的,能够有效的降低磁盘的I/O操作数,因此我们经常看到有许多数据库系统使用B树或B树的变种来储存数据结构:从结构上看,B树的结点可以有很多孩子,从数个到数千个,这通常依赖于所使用的磁盘的单元特性. 如下图,给出了一棵简单的B树. 从图中我们可以发现,如果一个内部结点包含n个关键字,那么结点就有n+1个孩
分布式系列文章——Paxos算法原理与推导
Paxos算法在分布式领域具有非常重要的地位.但是Paxos算法有两个比较明显的缺点:1.难以理解 2.工程实现更难. 网上有很多讲解Paxos算法的文章,但是质量参差不齐.看了很多关于Paxos的资料后发现,学习Paxos最好的资料是论文<Paxos Made Simple>,其次是中.英文版维基百科对Paxos的介绍.本文试图带大家一步步揭开Paxos神秘的面纱. Paxos是什么 Paxos算法是基于消息传递且具有高度容错特性的一致性算法,是目前公认的解决分布式一致性问题最有效的算法之一
【Machine Learning】KNN算法虹膜图片识别
K-近邻算法虹膜图片识别实战 作者:白宁超 2017年1月3日18:26:33 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结合视频学习和书籍基础的笔记所得.本系列文章将采用理论结合实践方式编写.首先介绍机器学习和深度学习的范畴,然后介绍关于训练集.测试集等介绍.接着分别介绍机器学习常用算法,分别是监督学习之分类(决策树.临近取样.支持向量机.神经网络算法)监督学习之回归(线性回归.非线性回归)非监督学习(K-means聚
红黑树——算法导论(15)
1. 什么是红黑树 (1) 简介 上一篇我们介绍了基本动态集合操作时间复杂度均为O(h)的二叉搜索树.但遗憾的是,只有当二叉搜索树高度较低时,这些集合操作才会较快:即当树的高度较高(甚至一种极端情况是树变成了1条链)时,这些集合操作并不比在链表上执行的快. 于是我们需要构建出一种"平衡"的二叉搜索树. 红黑树(red-black tree)正是其中的一种.它可以保证在最坏的情况下,基本集合操作的时间复杂度是O(lgn). (2) 性质 与普通二叉搜索树不
散列表(hash table)——算法导论(13)
1. 引言 许多应用都需要动态集合结构,它至少需要支持Insert,search和delete字典操作.散列表(hash table)是实现字典操作的一种有效的数据结构. 2. 直接寻址表 在介绍散列表之前,我们先介绍直接寻址表. 当关键字的全域U(关键字的范围)比较小时,直接寻址是一种简单而有效的技术.我们假设某应用要用到一个动态集合,其中每个元素的关键字都是取自于全域U={0,1,…,m-1},其中m不是一个很大的数.另外,假设每个元素的关键字都不同. 为表示动态集合,我们用一个数组,或称为
虚拟dom与diff算法 分析
好文集合: 深入浅出React(四):虚拟DOM Diff算法解析 全面理解虚拟DOM,实现虚拟DOM
简单有效的kmp算法
以前看过kmp算法,当时接触后总感觉好深奥啊,抱着数据结构的数啃了一中午,最终才大致看懂,后来提起kmp也只剩下“奥,它是做模式匹配的”这点干货.最近有空,翻出来算法导论看看,原来就是这么简单(先不说程序实现,思想很简单). 模式匹配的经典应用:从一个字符串中找到模式字串的位置.如“abcdef”中“cde”出现在原串第三个位置.从基础看起 朴素的模式匹配算法 A:abcdefg B:cde 首先B从A的第一位开始比较,B++==A++,如果全部成立,返回即可:如果不成立,跳出,从A的第二位开
神经网络、logistic回归等分类算法简单实现
最近在github上看到一个很有趣的项目,通过文本训练可以让计算机写出特定风格的文章,有人就专门写了一个小项目生成汪峰风格的歌词.看完后有一些自己的小想法,也想做一个玩儿一玩儿.用到的原理是深度学习里的循环神经网络,无奈理论太艰深,只能从头开始开始慢慢看,因此产生写一个项目的想法,把机器学习和深度学习里关于分类的算法整理一下,按照原理写一些demo,方便自己也方便其他人.项目地址:https://github.com/LiuRoy/classfication_demo,目前实现了逻辑回归和神经网
热门专题
postman开多线程压测
djagno admin 不显示字段
mysql两表进行全连接
linux rm -rf命令
win10装完ide怎么改ahci
current account带符号
git 免密码 提交 ssh
google web designer 教程
react-color 官网
html input number 整数
layui table 动态增加多列
rabbitmq中的vhost有什么用
dds和png有什么区别
matlab imagesc颜色栏
postman通过请求接口返回值设置环境变量
log4j.xml 只输出了系统日志
为什么ADSL系统在,电话线路上要划分语音上行与下行三个信道
dmp文件怎么产生的
小程序svg水印怎么用
如何将ansi转为utf-8不乱码