前言 论文“Deep Boltzmann Machines”是Geoffrey Hinton和他的大牛学生Ruslan Salakhutdinov在论文“Reducing the Dimensionality of Data with Neural Networks”合作后的又一次联合发表的一篇有深远影响的论文,这篇论文第一次提出了DBM及其学习方法,对DBM原理.来源都做了详细讲解. 论文内容 前面介绍的都是BM原理及其训练,可以不用管它,下面直接从第3节开始…… 3.DBM 一般情况下,我们
6.标签特征二元化 处理分类变量还有另一种方法,不需要通过OneHotEncoder,我们可以用LabelBinarizer. 这是一个阈值与分类变量组合的方法. In [1]: from sklearn import datasets as d iris = d.load_iris() target = iris.target How to do it... 导入LabelBinarizer()创建一个对象: In [2]: from sklearn.preprocessing import
1. Alternating Least Square ALS(Alternating Least Square),交替最小二乘法.在机器学习中,特指使用最小二乘法的一种协同推荐算法.如下图所示,u表示用户,v表示商品,用户给商品打分,但是并不是每一个用户都会给每一种商品打分.比如用户u6就没有给商品v3打分,需要我们推断出来,这就是机器学习的任务. 由于并不是每个用户给每种商品都打了分,可以假设ALS矩阵是低秩的,即一个m*n的矩阵,是由m*k和k*n两个矩阵相乘得到的,其中k<<m,n.
出处:2018 AAAI SourceCode:https://github.com/salu133445/musegan abstract: (写得不错 值得借鉴)重点阐述了生成音乐和生成图片,视频及语音的不同.首先音乐是基于时间序列的:其次音符在和弦.琶音(arpeggios).旋律.复音等规则的控制之下的:同时一首歌曲是多track的.总之不能简单堆叠音符.本文基于GAN提出了三种模型来生成音乐:jamming model, the composer model and the hybri