首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
counting Bloom filter 冲突率
2024-10-20
Bloom filter和Counting bloom filter
Bloom filter原理: https://en.wikipedia.org/wiki/Bloom_filter 推导过程结合博客: https://blog.csdn.net/jiaomeng/article/details/1495500 Counting bloom filter原理: https://blog.csdn.net/jiaomeng/article/details/1498283
Counting Bloom Filter
Counting Bloom Filter是 改进型,将记录标准的存在位0和1,扩展为计数器counter.记录有几个元素.插入加一,删除减一.多占几倍存储空间. 标准的Bloom Filter是一种简单的数据结构,只有插入,查询两个操作.不支持删除操作,所以静态集合上可以很好工作.如果集合经常变动,则不能用. 随机数据结构,利用位数组简洁地表示一个集合,并判断一个元素是否属于这个集合.存在错误率,可能把不属于集合的元素误认为属于集合(false positive).往篮子里捡白鸡蛋,可能捡了几
Bloom Filter 算法简介 (增加 Counting Bloom Filter 内容)
Bloom Filter的中文翻译叫做布隆过滤器,是1970年由布隆提出的.它实际上是一个很长的二进制向量和一系列随机映射函数.布隆过滤器可以用于检索一个元素是否在一个集合中.它的优点是空间效率和查询时间都远远超过一般的算法,缺点是有一定的误识别率和删除困难.如文章标题所述,本文只是做简单介绍,属于科普文章. 应用场景在正式介绍Bloom Filter算法之前,先来看看什么时候需要用到Bloom Filter算法.1. HTTP缓存服务器.Web爬虫等主要工作是判断一条URL是否在现有的URL集
海量数据处理算法—Bloom Filter
海量数据处理算法—Bloom Filter 1. Bloom-Filter算法简介 Bloom-Filter,即布隆过滤器,1970年由Bloom中提出.它可以用于检索一个元素是否在一个集合中. Bloom Filter(BF)是一种空间效率很高的随机数据结构,它利用位数组很简洁地表示一个集合,并能判断一个元素是否属于这个集合.它是一个判断元素是否存在集合的快速的概率算法.Bloom Filter有可能会出现错误判断,但不会漏掉判断.也就是Bloom Filter判断元素不再集合,那肯定不在.如
大数据量下的集合过滤—Bloom Filter
算法背景 如果想判断一个元素是不是在一个集合里,一般想到的是将集合中所有元素保存起来,然后通过比较确定.链表.树.散列表(又叫哈希表,Hash table)等等数据结构都是这种思路,存储位置要么是磁盘,要么是内存.很多时候要么是以时间换空间,要么是以空间换时间. 在响应时间要求比较严格的情况下,如果我们存在内里,那么随着集合中元素的增加,我们需要的存储空间越来越大,以及检索的时间越来越长,导致内存开销太大.时间效率变低. 此时需要考虑解决的问题就是,在数据量比较大的情况下,既满足时间要求,又满足
大数据处理算法--Bloom Filter布隆过滤
1. Bloom-Filter算法简介 Bloom-Filter,即布隆过滤器,1970年由Bloom中提出.它可以用于检索一个元素是否在一个集合中. Bloom Filter(BF)是一种空间效率很高的随机数据结构,它利用位数组很简洁地表示一个集合,并能判断一个元素是否属于这个集合.它是一个判断元素是否存在集合的快速的概率算法.Bloom Filter有可能会出现错误判断,但不会漏掉判断.也就是Bloom Filter判断元素不再集合,那肯定不在.如果判断元素存在集合中,有一定的概率判断错误.
【转】海量数据处理算法-Bloom Filter
1. Bloom-Filter算法简介 Bloom Filter(BF)是一种空间效率很高的随机数据结构,它利用位数组很简洁地表示一个集合,并能判断一个元素是否属于这个集合.它是一个判断元素是否存在于集合的快速的概率算法.Bloom Filter有可能会出现错误判断,但不会漏掉判断.也就是Bloom Filter判断元素不再集合,那肯定不在.如果判断元素存在集合中,有一定的概率判断错误.因此,Bloom Filter不适合那些“零错误”的应用场合.而在能容忍低错误率的应用场合下,Bloom Fi
浅谈布隆过滤器Bloom Filter
先从一道面试题开始: 给A,B两个文件,各存放50亿条URL,每条URL占用64字节,内存限制是4G,让你找出A,B文件共同的URL. 这个问题的本质在于判断一个元素是否在一个集合中.哈希表以O(1)的时间复杂度来查询元素,但付出了空间的代价.在这个大数据问题中,就算哈希表有100%的空间利用率,也至少需要50亿*64Byte的空间,4G肯定是远远不够的. 当然我们可能想到使用位图,每个URL取整数哈希值,置于位图相应的位置上.4G大概有320亿个bit,看上去是可行的.但位图适合对海量的.取值
Bloom Filter算法
Bloom Filter算法详解 什么是布隆过滤器 布隆过滤器(Bloom Filter)是 1970 年由布隆提出的.它实际上是一个很长的二进制向量和一系列随机映射函数 (下面详细说),实际上你也可以把它简单理解为一个不怎么精确的set结构,当你使用它的contains方法判断某个对象是否存在时,它可能会误判.但是布隆过滤器也不是特别不精确,只要参数设置的合理,它的精确度可以控制的相对足够精确,只会有小小的误判概率. 当布隆过滤器说某个值存在时,这个值可能不存在:但是当它说不存在时,那么这个值
1.Bloom filter
Bloom filter 是由 Howard Bloom 在 1970 年提出的二进制向量数据结构,它具有很好的空间和时间效率,被用来检测一个元素是不是集合中的一个成员,这种检测只会对在集合内的数据错判,而不会对不是集合内的数据进行错判,这样每个检测请求返回有“在集合内(可能错误)”和“不在集合内(绝对不在集合内)”两种情况,可见 Bloom filter 是牺牲了正确率换取时间和空间. 如需要判断一个元素是不是在一个集合中,我们通常做法是把所有元素保存下来,然后通过比较知道它是不是在集合内,链
Bloom Filter的基本原理和变种
学习一个东西首先要知道这个东西是什么,可以做什么,接着再了解这个东西有什么好处和优势,然后再学习他的工作原理.下面我们分别从这三点简单介绍一下bloom filter,以及和他的变种. What:在允许一定的错误率的情况下,用于判断一个元素是否属于一个集合,Bloom Filter可能会将一个不属于集合的元素误判为属于这个集合,即false positive.可以应用于检查一个URL是否已经被爬虫爬过.网络缓存共享.字符串匹配等等 Why:时间和空间效率较高(与hash比较) How: 存储元素
笔试算法题(43):布隆过滤器(Bloom Filter)
议题:布隆过滤器(Bloom Filter) 分析: BF由一个很长的二进制向量和一系列随机映射的函数组成,通过多个Hash函数将一个元素映射到一个Bit Array中的多个点,查询的时候仅当所有的映射点都为1才能判断元素存在于集合内:BF用于检索一个元素是否在一个集合中,记忆集合求交集:优点是空间 和时间效率都超过一般查询算法,缺点是有一定的误判概率和删除困难: 如下图,使用三个哈希函数对每个元素进行映射,这样每个元素对应HashTable中的三个位置,如果查找w是否在HashTable中则仍
Bloom Filter(布隆过滤器)的概念和原理
Bloom filter 适用范围:可以用来实现数据字典,进行数据的判重,或者集合求交集 基本原理及要点: 对于原理来说很简单,位数组+k个独立hash函数.将hash函数对应的值的位数组置1,查找时如果发现所有hash函数对应位都是1说明存在,很明显这个过程并不保证查找的结果是100%正确的.同时也不支持删除一个已经插入的关键字,因为该关键字对应的位会牵动到其他的关键字.所以一个简单的改进就是 counting Bloom filter,用一个counter数组代替位数组,就可以支持删除了.
海量数据处理 从哈希存储到Bloom Filter(1) (转载)
先解释一下什么是哈希函数.哈希函数简单来说就是一种映射,它可取值的范围(定义域)通常很大,但值域相对较小.哈希函数所作的工作就是将一个很大定义域内的值映射到一个相对较小的值域内. 传统的哈希存储 假设要哈希的集合为S,它有n个元素.传统的哈希方法是,将哈希区域组织成h(h > n)个格子的列表,每一个格子都能存储S中的一个元素.存储时将S中的每一个元素映射到{0, 1, … , h-1}的范围内,然后以这个值为索引将此元素存储到对应的格子内.由于哈希函数将一个大集合映射到一个小集合中,所以存在将
bloom filter小结
Bloom Filter是由 Howard Bloom在 1970 年提出的一种多哈希函数映射的快速查找算法,它是一种空间效率很高的随机数据结构,利用位数组很简洁地表示一个集合,并能判断一个元素是否属于这个集合,非常快速的判定某个元素是否在一个集合之外.不过,这种检测只会对在集合内的数据错判,而不会对不是集合内的数据进行错判,也就是说,在判断一个元素是否属于某个集合时,有可能会把不属于这个集合的元素误认为属于这个集合(false positive),这样每个检测请求返回有“在集合内(可能错误)”
布隆过滤器 Bloom Filter 2
date: 2020-04-01 17:00:00 updated: 2020-04-01 17:00:00 Bloom Filter 布隆过滤器 之前的一版笔记 点此跳转 1. 什么是布隆过滤器 本质上布隆过滤器是一种数据结构,比较巧妙的概率型数据结构(probabilistic data structure),特点是高效地插入和查询,可以用来告诉你 "某样东西一定不存在或者可能存在". 相比于传统的 List.Set.Map 等数据结构,它更高效.占用空间更少,但是缺点是其返回的结
[转载] 布隆过滤器(Bloom Filter)详解
转载自http://www.cnblogs.com/haippy/archive/2012/07/13/2590351.html 布隆过滤器[1](Bloom Filter)是由布隆(Burton Howard Bloom)在1970年提出的.它实际上是由一个很长的二进制向量和一系列随机映射函数组成,布隆过滤器可以用于检索一个元素是否在一个集合中.它的优点是空间效率和查询时间都远远超过一般的算法,缺点是有一定的误识别率(假正例False positives,即Bloom Filter报告某一
布隆过滤器(Bloom Filter)详解
直观的说,bloom算法类似一个hash set,用来判断某个元素(key)是否在某个集合中.和一般的hash set不同的是,这个算法无需存储key的值,对于每个key,只需要k个比特位,每个存储一个标志,用来判断key是否在集合中. 算法: 1. 首先需要k个hash函数,每个函数可以把key散列成为1个整数 2. 初始化时,需要一个长度为n比特的数组,每个比特位初始化为0 3. 某个key加入集合时,用k个hash函数计算出k个散列值,并把数组中对应的比特位置为1 4. 判断某个key是否
Bloom Filter的算法
Bloom Filter的算法: 为了降低冲突的概念,Bloom Filter使用了多个哈希函数,而不是一个.创建一个m位BitSet,先将所有位初始化为0,然后选择k个不同的哈希函数.第i个哈希函数对字符串str哈希的结果记为h(i,str),且h(i,str)的范围是0到m-1 处理字符串的过程: 对于字符串str,分别计算h(1,str),h(2,str)…… h(k,str).然后将BitSet的第h(1,str).h(2,str)…… h(k,str)位设为1. 检查字符串是否存在的
bloom filter
Bloom filter 是由 Howard Bloom 在 1970 年提出的二进制向量数据结构,它具有很好的空间和时间效率,被用来检测一个元素是不是集合中的一个成员. 结 构 二进制 召回率 100% 方 法 哈希函数 目录 1 简介 2 计算方法 3 优点缺点 4 简单例子 简介 编辑 Bloom filter 是由 Howard Bloom 在 1970 年提出的二进制向量数据结构,它具有很好的空间和时间效率,被用来检测一个元素是不是集合中的一个成员.如果检测结果为是,该元素
热门专题
java安装错误1335
Cglib BeanCopier使用
怎么li标签间的间隔
sed 删除匹配字符串前的内容
keystore系统签名apk
2018 年省赛真题 3 明码
docker安装airflow
matlab信号的相关性
istio 服务间调用
window.addEventListener的load
border属性的像素是怎么算的
Bower代理 nexus3
vue3中使用render函数创建其他标签
c 自动检测数据类型并检查是否溢出
xshell连接虚拟机linux下载mysql5.7.19
uniapp 微信h5支付 商家参数格式有误,请联系商家解决
红帽 控制台 快捷键
Azure 文件结构 平面命名空间
concurrenthashmap 本地缓存
es windows不自动加入集群