首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
darknet继续训练
2024-08-30
(转)darknet 训练心得
1. 安装darknet 使用Git克隆源码 git clone https://github.com/pjreddie/darknet 我们可能需要修改Makefile,主要修改前三行,配置使用GPU(CUDA),CUDNN,OPENCV GPU=1 CUDNN=1 OPENCV=1 之后运行 make -j8 wget https://pjreddie.com/media/files/yolov3.weights ./darknet detect cfg/yolov3.cfg yolov3.
YOLO(Darknet官方)训练分类器
目录 1. 分类数据准备 2. Darknet配置 3. Darknet命令使用 4. cifar-10 使用示例 1. 分类数据准备 需要的文件列表: 1. train.list : 训练的图片的绝对路径 2. test.list : 用于测试的图片的绝对路径 3. labels.txt : 所有的类别,一行一个类 4. voc.data : darknet配置文件,记录相关位置信息 5. cifar.cfg : 网络配置文件 按照以下目录结构进行构造: VOCdevkit VOC2017 J
darknet训练yolov3时的一些注意事项
训练需要用到的文件: 1) .data文件.该文件包含一些配置信息,具体为训练的总类别数,训练数据和验证数据的路径,类别名称,模型存放路径等. 例如coco.data classes= 80 # 训练总类别数 train = /home/xxx/code/darknet/data/coco/trainvalno5k.txt #训练数据路径 valid = /home/xxx/code/darknet/data/coco/5k.txt #验证集路径 names = data/coco.
Darknet的整体框架,安装,训练与测试
目录 一.Darknet优势 二.Darknet的结构 三.Darknet安装 四.Darknet的训练 五.Darknet的检测 正文 一.Darknet优势 darknet是一个由纯C编写的深度学习框架,它有着其它深度学习框架无法相比的优势: 1.易于安装:在makefile里面选择自己需要的附加项(cuda,cudnn,opencv等)直接make即可,几分钟完成安装:2.没有任何依赖项:整个框架都用C语言进行编写,可以不依赖任何库,连opencv作者都编写了可以对其进行替代的函数:3.结
ubuntu yolov2 训练自己的数据集
项目需求+锻炼自己,尝试用yolov2跑自己的数据集,中间遇到了很多问题,记下来防止忘记 一.数据集 首先发现由于物体特殊没有合适的现成的数据集使用,所以只好自己标注,为了减少工作量,先用opencv标记连通域 (环境 ubuntu qt opencv) 在qt中创建console类型工程,需要对test.pro进行如下配置 QT -= gui QT += core CONFIG += c++11 CONFIG += console CONFIG -= app_bundle TARGET = t
[深度学习] 使用Darknet YOLO 模型破解中文验证码点击识别
内容 背景 准备 实践 结果 总结 引用 背景 老规矩,先上代码吧 代码所在: https://github.com/BruceDone/darknet_demo 最近在做深度学习相关的项目的时候,了解在现有的深度学习检测流派里面有one-stage ,two stage 两种流派,one-stage流派中yolo模型十分的抢眼 OK,在进一步了解了yolo模型之后,发现不仅有提供速度非快的yolo v3 tiny 版本,而且准确率也非常高,顿时想起了之前在上一篇Tensorflow破解验证码只
深度学习(六十八)darknet使用
这几天因为要对yolo进行重新训练,需要用到imagenet pretrain,由于网络是自己设计的网络,所以需要先在darknet上训练imagenet,由于网上都没有相关的说明教程,特别是图片路径是怎么和类别标签对应起来的,让我百思不得其解,所以最后就自己去查看了darknet的源码,发现原来作者是用了字符串匹配,来查找图片路径字符串中是否有与类别标签字符串匹配的子字符串,以此判断该类别标签的. 1.darknet对于图片分类训练.验证命令为: ./darknet classifier tr
darknet(yolov2)移植到caffe框架
yolov2到caffe的移植主要分两个步骤:一.cfg,weights转换为prototxt,caffemodel1.下载源码:git clone https://github.com/marvis/pytorch-caffe-darknet-convert.git 2.安装pytorch,使用conda指令:(需要有torch模块)conda install pytorch torchvision cuda80 -c soumith [这里cuda换成自己对应的版本] 3.cd pytorc
darknet53 yolo 下的识别训练
[目录] 一. 安装Darknet(仅CPU下) 2 1.1在CPU下安装Darknet方式 2 1.2在GPU下安装Darknet方式 4 二. YOLO.V3训练官网数据集(VOC数据集/COCO数据集) 4 2.1下载VOC数据集/COCO数据集 4 2.2下载预训练的模型(.weights文件) 8 三. YOLO.V3训练自己的数据集(以3类别的为例) 8 3.1制作自己的VOC格式训练集 8 3.1.1图像(.jpg)进行重命名(00000X.jpg) 9 3.1.2制作图像的.xm
darknet是如何对数据集做resize的?
在准备数据集时,darknet并不要求我们预先对图片resize到固定的size. darknet自动帮我们做了图像的resize. darknet训练前处理 本文所指的darknet版本:https://github.com/AlexeyAB/darknet ./darknet detector train data/trafficlights.data yolov3-tiny_trafficlights.cfg yolov3-tiny.conv.15 main函数位于darknet.c 训练
Win10中用yolov3训练自己的数据集全过程(VS、CUDA、CUDNN、OpenCV配置,训练和测试)
在Windows系统的Linux系统中用yolo训练自己的数据集的配置差异很大,今天总结在win10中配置yolo并进行训练和测试的全过程. 提纲: 1.下载适用于Windows的darknet 2.安装VS和CUDA.CUDNN.OpenCV 1)安装VS2017 2)安装OpenCV 3)VS配置OpenCV 4)安装CUDA10.0和CUDNN7.5 5)VS配置CUDA 3. 编译darknet 4.训练自己的数据集 5.开始训练 6.测试 1.下载适用于Windows的darknet
YOLO---Darknet下的学习笔记
YOLO.V3-Darknet下的学习笔记 @wp20180927 [目录] 一. 安装Darknet(仅CPU下) 2 1.1在CPU下安装Darknet方式 2 1.2在GPU下安装Darknet方式 4 二. YOLO.V3训练官网数据集(VOC数据集/COCO数据集) 4 2.1下载VOC数据集/COCO数据集 4 2.2下载预训练的模型(.weights文件) 8 三. YOLO.V3训练自己的数据集(以3类别的为例) 8 3.1制作自己的VOC格式训练集 8 3.1.1图像(.jpg
darknet YOLOv2安装及数据集训练
一. YOLOv2安装使用 1. darknet YOLOv2安装 git clone https://github.com/pjreddie/darknetcd darknetmake或到网址上下载darknet文件夹,解压后在darknet文件夹下执行make编译. 2. 预测模型权重下载 wget https://pjreddie.com/media/files/yolo.weights或到网址上下载yolo.weights,放到darknet目录下. 3. 目标检测 ./darknet
yolo3使用darknet卷积神经网络训练pascal voc
darknet本来最开始学的是https://github.com/pjreddie/darknet yolo3作者自己开发的,但是它很久不更新了而且mAP值不好观察,于是另外有个https://github.com/AlexeyAB/darknet fork了它,然后在它上面给出了更精彩的实现,比如支持windows,还有改了一些bug,以及最重要支持训练时候mAP图形化观察 我的远程服务器操作系统是Linux 1. git clone https://github.com/AlexeyAB/
YOLOv4: Darknet 如何于 Docker 编译,及训练 COCO 子集
YOLO 算法是非常著名的目标检测算法.从其全称 You Only Look Once: Unified, Real-Time Object Detection ,可以看出它的特性: Look Once: one-stage (one-shot object detectors) 算法,把目标检测的两个任务分类和定位一步完成. Unified: 统一的架构,提供 end-to-end 的训练和预测. Real-Time: 实时性,初代论文给出的指标 FPS 45 , mAP 63.4 . YOL
yolov2训练ICDAR2011数据集
首先下载数据集train-textloc.zip 其groundtruth文件如下所示: 158,128,412,182,"Footpath" 442,128,501,170,"To" 393,198,488,240,"and" 63,200,363,242,"Colchester" 71,271,383,313,"Greenstead" ground truth 文件格式为:xmin, ymin, xma
利用YOLOV3训练自己的数据
写在前面:YOLOV3只有修改了源码才需要重新make,而且make之前要先make clean. 一.准备数据 在/darknet/VOCdevkit1下建立文件夹VOC2007. voc2007文件夹下建立三个文件夹,分别为Annotations,ImageSets和JPEGImages,其中JPEGImages存放所有.jpg格式的训练图片,Annotations存放所有图片的xml文件 图片最好按数字顺序排列,如00001.jpg,00002.jpg等,可以用脚本生成. ImageSet
YOLOv3:训练自己的数据(附优化与问题总结)
环境说明 系统:ubuntu16.04 显卡:Tesla k80 12G显存 python环境: 2.7 && 3.6 前提条件:cuda9.0 cudnn7.0 opencv3.4.0 安装cuda和cudnn教程 安装opencv3.4.0教程 实现YOLOV3的demo 首先安装darknet框架,官网链接 git clone https://github.com/pjreddie/darknet.git cd darknet vim Makefile 根据情况修改Makefile,
第十一节,利用yolov3训练自己的数据集
1.环境配置 tensorflow1.12.0 Opencv3.4.2 keras pycharm 2.配置yolov3 下载yolov3代码:https://github.com/qqwweee/keras-yolo3 下载权重:https://pjreddie.com/media/files/yolov3.weights,并将权重文件放在keras-yolo3-master文件下 执行如下命令将darknet下的yolov3配置文件转换成keras适用的h5文件. python conver
Win7+keras+tensorflow使用YOLO-v3训练自己的数据集
一.下载和测试模型 1. 下载YOLO-v3 git clone https://github.com/qqwweee/keras-yolo3.git 这是在Ubuntu里的命令,windows直接去 https://github.com/qqwweee/keras-yolo3下载.解压.得到一个 keras-yolo3-master 文件夹 2. 下载权重 wget https://pjreddie.com/media/files/yolov3.weights 去 https://pjredd
热门专题
微信小程序 列表点击带参数
postman8.10.0 send 按钮
java.util.Random生成随机数字字符串
servlet缺省匹配是什么意思
荣耀手机连不上VPN
python自定义函数关键字 数组
kvm虚拟机添加cpu
centos查看下载的 rpm路径
python 盒型图计算
dapper entity 与表里字段怎么映射
Ubuntu 增加软连接之后,Tomcat访问403
css超出一行后省略
PHP layui table分页
Caliburn.Micro源码的Github网址
ios tabbar 双击事件添加
oracle cast 字符串转数字
ios怎么申请证书收费标准
vba连接sqlserver数据库
delphi 取括号中间字符串
mysql 查询多个字段作为唯一数据