虽然很多CNN模型在图像识别领域取得了巨大的成功,但是一个越来越突出的问题就是模型的复杂度太高,无法在手机端使用,为了能在手机端将CNN模型跑起来,并且能取得不错的效果,有很多研究人员做了很多有意义的探索和尝试,今天就介绍两个比较轻量级的模型 mobile net 和 shuffle net. 在介绍这几个轻量型的网络之前,我们先来看看,为什么卷积神经网络的运算功耗这么大. 卷积神经网络,顾名思义,就是会有很多的卷积运算,而卷积神经网络中,最费时间的就是其中的卷积运算.我们知道,一张 h×w"
先来一波各版本性能展览: Pre-trained Models Choose the right MobileNet model to fit your latency and size budget. The size of the network in memory and on disk is proportional to the number of parameters. The latency and power usage of the network scales with th
张宁 Real-Time Vehicle Detection from Short-Range Aerial Image with Compressed MobileNet链接:https://pan.baidu.com/s/1Uk6McGCnCzTieJYehjSFBA 提取码:e0bn Yuhang He, Ziyu Pan, Lingxi Li, Yunxiao Shan, Dongpu Cao and Long Chen Vehicle detection from short-rang
来一发普通的二维卷积 1.输入feature map的格式为:m * m * h1 2.卷积核为 k * k 3.输出feature map的格式为: n * n * h2 参数量:k * k * h1 * h2 计算量: k * k * h1 * n * n * h2 分组卷积 设分组大小为g,则: 参数量: (k * k * h1/g * h2 /g) * g 计算量:(k * k * h1/g n n * h2/g)*g squeezenet 单元名字为fire_module, 先用一个1