首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
dropout随机失活
2024-11-03
深度学习面试题14:Dropout(随机失活)
目录 卷积层的dropout 全连接层的dropout Dropout的反向传播 Dropout的反向传播举例 参考资料 在训练过程中,Dropout会让输出中的每个值以概率keep_prob变为原来的1/keep_prob倍,以概率1-keep_prob变为0.也就是在每一轮的训练中让一些神经元随机失活,从而让每一个神经元都有机会得到更高效的学习,会让网络更加健壮,减小过拟合. 在预测过程中,不再随机失活,也不在扩大神经元的输出. 卷积层的dropout 举例:以一个2*4的二维张量为例,参数
[DeeplearningAI笔记]改善深层神经网络1.4_1.8深度学习实用层面_正则化Regularization与改善过拟合
觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.4 正则化(regularization) 如果你的神经网络出现了过拟合(训练集与验证集得到的结果方差较大),最先想到的方法就是正则化(regularization).另一个解决高方差的方法就是准备更多的数据,这也是非常可靠的方法. 正则化的原理 正则化公式简析 L1范数:向量各个元素绝对值之和 L2范数:向量各个元素的平方求和然后求平方根 Lp范数:向量各个元素绝对值的p次方求和然后求1/p次方 L∞范数:向量各个元素求绝对值,最大那
CNN学习笔记:正则化缓解过拟合
CNN学习笔记:正则化缓解过拟合 过拟合现象 在下图中,虽然绿线完美的匹配训练数据,但太过依赖,并且与黑线相比,对于新的测试数据上会具有更高的错误率.虽然这个模型在训练数据集上的正确率很高,但这个模型却很难对从未见过的数据做出正确响应,认为该模型存在过拟合现象. 绿线代表过拟合模型,黑线代表正则化模型.故我们使用正则化来解决过拟合问题. 正则化模型 正则化是机器学习中通过显示控制模型复杂度来避免模型过拟合.确保泛化能力的一种有效方式.正则化在损失函数中引入模型复杂度指标,利用给W加权值,弱化了训
1.6 dropout正则化
除了L2正则化,还有一个非常实用的正则化方法----dropout(随机失活),下面介绍其工作原理. 假设你在训练下图左边的这样的神经网络,它存在过拟合情况,这就是dropout所要处理的.我们复制这个神经网络,dropout会遍历网络每一层,并设置一个消除神经网络中节点的概率. 假设网络中的每一层,每个节点都以抛硬币的方式设置概率,每个节点得以保留和消除的概率都是0.5,设置完节点之后,我们会消除一些节点,然后删掉从该节点进出的连线,如下图,最后得到一个节点更少,规模更小的网络,然后用back
Dropout正则化和其他方法减少神经网络中的过拟合
1. 什么是Dropout(随机失活) 就是在神经网络的Dropout层,为每个神经元结点设置一个随机消除的概率,对于保留下来的神经元,我们得到一个节点较少,规模较小的网络进行训练. 标准网络和dropout网络: 左边是简单的模型,右边是含有dropout的模型 l: hidden layer index (隐藏层索引) z: denote the vector of inputs into layer l(表示l层的向量输入) y: output of each layer(每一层的输出)
【python实现卷积神经网络】Dropout层实现
代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https://www.cnblogs.com/xiximayou/p/12706576.html 激活函数的实现(sigmoid.softmax.tanh.relu.leakyrelu.elu.selu.softplus):https://www.cnblogs.com/xiximayou/p/127130
9、改善深度神经网络之正则化、Dropout正则化
首先我们理解一下,什么叫做正则化? 目的角度:防止过拟合 简单来说,正则化是一种为了减小测试误差的行为(有时候会增加训练误差).我们在构造机器学习模型时,最终目的是让模型在面对新数据的时候,可以有很好的表现.当你用比较复杂的模型比如神经网络,去拟合数据时,很容易出现过拟合现象(训练集表现很好,测试集表现较差),这会导致模型的泛化能力下降,这时候,我们就需要使用正则化,降低模型的复杂度. 一.神经网路得L1.L2正则化 1.矩阵的F-1范数.F-2范数 说明:这里的F-范数指的是Frobenius
[转]理解dropout
理解dropout 原文地址:http://blog.csdn.net/stdcoutzyx/article/details/49022443 理解dropout 注意:图片都在github上放着,如果刷不开的话,可以考虑FQ. 转载请注明:http://blog.csdn.net/stdcoutzyx/article/details/49022443 开篇明义,dropout是指在深度学习网络的训练过程中,对于神经网络单元,按照一定的概率将其暂时从网络中丢弃.注意是暂时,对于随机梯度下
Dropout和学习率衰减
Dropout 在机器学习的模型中,如果模型的参数太多,而训练样本又太少,训练出来的模型很容易产生过拟合的现象.在训练神经网络的时候经常会遇到过拟合的问题,过拟合具体表现在:模型在训练数据上损失函数较小,预测准确率较高:但是在测试数据上损失函数比较大,预测准确率较低. 过拟合是很多机器学习的通病.如果模型过拟合,那么得到的模型几乎不能用.为了解决过拟合问题,一般会采用模型集成的方法,即训练多个模型进行组合.此时,训练模型费时就成为一个很大的问题,不仅训练多个模型费时,测试多个模型也是很
理解dropout
理解dropout 注意:图片都在github上放着,如果刷不开的话,可以考虑FQ. 转载请注明:http://blog.csdn.net/stdcoutzyx/article/details/49022443 开篇明义,dropout是指在深度学习网络的训练过程中,对于神经网络单元,按照一定的概率将其暂时从网络中丢弃.注意是暂时,对于随机梯度下降来说,由于是随机丢弃,故而每一个mini-batch都在训练不同的网络. dropout是CNN中防止过拟合提高效果的一个大杀器,但对于其为何有效,却
【深度学习系列】用PaddlePaddle和Tensorflow实现AlexNet
上周我们用PaddlePaddle和Tensorflow实现了图像分类,分别用自己手写的一个简单的CNN网络simple_cnn和LeNet-5的CNN网络识别cifar-10数据集.在上周的实验表现中,经过200次迭代后的LeNet-5的准确率为60%左右,这个结果差强人意,毕竟是二十年前写的网络结构,结果简单,层数也很少,这一节中我们讲讲在2012年的Image比赛中大放异彩的AlexNet,并用AlexNet对cifar-10数据进行分类,对比上周的LeNet-5的效果. 什么是AlexN
AleNet模型笔记
谁创造了AlexNet? AlexNet是有Hinton大神的弟子Alex Krizhevsky提出的深度卷积神经网络.它可视为LeNet的更深更宽的版本. AlexNet主要用到的技术 成功使用ReLU作为CNN的激活函数,并验证了其效果在较深的神经网络超过了sigmiod,成功解决了sigmoid在网络较深时的梯度弥散问题. 训练时候使用Dropout以一定概率随机失活了一部分神经元,一面模型过拟合. 使用重叠最大池化方法:池化核尺寸大于步长,是的卷积层的输出之间有重叠部分,提升了特征的丰富
【深度学习系列】用PaddlePaddle和Tensorflow实现经典CNN网络AlexNet
上周我们用PaddlePaddle和Tensorflow实现了图像分类,分别用自己手写的一个简单的CNN网络simple_cnn和LeNet-5的CNN网络识别cifar-10数据集.在上周的实验表现中,经过200次迭代后的LeNet-5的准确率为60%左右,这个结果差强人意,毕竟是二十年前写的网络结构,结果简单,层数也很少,这一节中我们讲讲在2012年的Image比赛中大放异彩的AlexNet,并用AlexNet对cifar-10数据进行分类,对比上周的LeNet-5的效果. 什么是AlexN
PyTorch常用代码段整理合集
PyTorch常用代码段整理合集 转自:知乎 作者:张皓 众所周知,程序猿在写代码时通常会在网上搜索大量资料,其中大部分是代码段.然而,这项工作常常令人心累身疲,耗费大量时间.所以,今天小编转载了知乎上的一篇文章,介绍了一些常用PyTorch代码段,希望能够为奋战在电脑桌前的众多程序猿们提供帮助! 本文代码基于 PyTorch 1.0 版本,需要用到以下包 import collectionsimport osimport shutilimport tqdm import numpy as np
Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization(第一周)深度学习的实践层面 (Practical aspects of Deep Learning)
1. Setting up your Machine Learning Application 1.1 训练,验证,测试集(Train / Dev / Test sets) 1.2 Bias/Variance(偏差和方差) 高偏差(high bias)称为"欠拟合"(underfitting), 练集误差与验证集误差都高. 高方差(high variance)称为过拟合(overfitting), 训练集误差很低而验证集误差很高. 1.3 Basic "recipe"
(Review cs231n) Training of Neural Network2
FFDNet---matlab 调用并批处理 format compact; global sigmas; % input noise level or input noise level map addpath(fullfile('utilities')); folderModel = 'models'; folderResult= 'results'; save_folder = 'datasets_c'; showResult = 1; useGPU = 0; % CPU or GPU.
DLNg改善深层NN:第一周DL的实用层面
1.为什么正则化可以减少过拟合? //答:可以让模型参数变小,减小模型的方差. 在损失函数中加入正则项,在正则化时,如果参数lamda设置得足够大,那么就相当于权重系数W接近于0 ,就会减少很多隐藏单元的影响,降低模型的复杂度,将模型从过拟合到欠拟合,当然,其中有一个lamda是使模型处于最优中间状态的. 在这个例子中,当lamda增大时,W变小,所以随之Z变小,当激活函数使用Tanh时,若Z小,那么在接近0的区间内,模型就相当于是一个线性函数,模型简化. 2.Dropout(随机失活)正则化
【CS231N】6、神经网络动态部分:损失函数等
一.疑问 二.知识点 1. 损失函数可视化 损失函数一般都是定义在高维度的空间中,这样要将其可视化就很困难.然而办法还是有的,在1个维度或者2个维度的方向上对高维空间进行切片,例如,随机生成一个权重矩阵,该矩阵就与高维空间中的一个点对应.然后沿着某个维度方向前进的同时记录损失函数值的变化.换句话说,就是生成一个随机的方向并且沿着此方向计算损失值,计算方法是根据不同的值来计算.这个过程将生成一个图表,其x轴是值,y轴是损失函数值.同样的方法还可以用在两个维度上,通过改变来计算损失值,从而给出二
ng-深度学习-课程笔记-6: 建立你的机器学习应用(Week1)
1 训练/验证/测试集( Train/Dev/test sets ) 构建神经网络的时候有些参数需要选择,比如层数,单元数,学习率,激活函数.这些参数可以通过在验证集上的表现好坏来进行选择. 前几年机器学习普遍的做法: 把数据分成60%训练集,20%验证集,20%测试集.如果有指明的测试集,那就用把数据分成70%训练集,30%验证集. 现在数据量大了,那么验证集和数据集的比例会变小.比如我们有100w的数据,取1w条数据来评估就可以了,取1w做验证集,1w做测试集,剩下的用来训练,即98%的训练
CS231n课程笔记翻译8:神经网络笔记 part3
译者注:本文智能单元首发,译自斯坦福CS231n课程笔记Neural Nets notes 3,课程教师Andrej Karpathy授权翻译.本篇教程由杜客翻译完成,堃堃和巩子嘉进行校对修改.译文含公式和代码,建议PC端阅读. 原文如下 内容列表: 梯度检查 合理性(Sanity)检查 检查学习过程 损失函数 训练集与验证集准确率 权重:更新比例 每层的激活数据与梯度分布 可视化 译者注:上篇翻译截止处 参数更新 一阶(随机梯度下降)方法,动量方法,Nesterov动量方法 学习率退火 二阶方
热门专题
嵌入式实验使用keil设置三个按钮
JS 获取文件流 并上传
c# tesseract4.1 训练库
neutron linuxbridge 配置
unity2018安装破解教程
kintex7 千兆网
wpf svg作为ico
C#的ListBox 如何识别换行
java获取resources下文件路径
esxi 7.0 命令你同步时间
sql语句 over patition by 计算占比
程序控制 geoserver 发布地图
mysql符号位和无符号
APP中 , 怎么切换句柄
c语言利用公式计算π的值
envi如何另存为img
deepin安装 分区
wpe的滤镜有什么用
windows 默认都使用管理员启动
random forest 回归建模会处理缺失值吗