转载自wentingtu 基于LDA的Topic Model变形最近几年来,随着LDA的产生和发展,涌现出了一批搞Topic Model的牛人.我主要关注了下面这位大牛和他的学生:David M. BleiLDA的创始者,04年博士毕业.一篇关于Topic Model的博士论文充分体现其精深的数学概率功底:而其自己实现的LDA又可体现其不俗的编程能力.说人无用,有论文为证: J. Chang and D. Blei. Relational Topic Models for Document Ne
转自:http://blog.csdn.net/hxxiaopei/article/details/8034308 http://blog.csdn.net/huagong_adu/article/details/7937616 LDA浅析 http://www.slideshare.net/aurora1625/topic-model-lda-and-all-that Topic model, LDA and all that LDA漫游指南 http://yuedu.baidu.com/eb
1.Tang, Jian, et al. "Understanding the Limiting Factors of Topic Modeling via Posterior Contraction Analysis." ICML. 2014. This is the best paper of ICML 2014. The first author is Jian Tang(his weibo:http://weibo.com/1741301241, Phd of Peking
http://www.cs.princeton.edu/~blei/topicmodeling.html Topic models are a suite of algorithms that uncover the hidden thematic structure in document collections. These algorithms help us develop new ways to search, browse and summarize large archives o
1.Blei的LDA代码(C):http://www.cs.princeton.edu/~blei/lda-c/index.html2.D.Bei的主页:http://www.cs.princeton.edu/~blei/publications.html3.Gibbs LDA++ by Xuan-Hieu Phan and Cam-Tu Nguyen(C++):http://gibbslda.sourceforge.net/4.用GibbsLDA做Topic Modeling (教程 by
David M.BLEI nCR文献学习笔记(基本完成了) http://yhbys.blog.sohu.com/238343705.html 题目:The Nested Chinese Restaurant Process and Bayesian Nonparametric Inference of Topic Hierarchies David M.BLEI 这个LDA领域的大牛,对LDA有诸多变形,这一片是将随机过程(stochastic process)用于无参贝叶斯推断上,构造主题