Eigen 不仅提供了Matrix和Vector结构,还提供了Array结构.区别如下,Matrix和Vector就是线性代数中定义的矩阵和向量,所有的数学运算都和数学上一致.但是存在一个问题是数学上的定义并不一定能完全满足现实需求.比如,数学上并没有定义一个矩阵和一个标量的加法运算.但是如果我们想给一个矩阵的每个元素都加上同一个数,那么这个操作就需要我们自己去实现,这显然并不方便. Array提供了一个Array类,为我们提供了大量的矩阵未定义的操作,且Array和Matrix之间很容易相互转
c++ 的 eigen 类似于 python 的 numpy, 还有一个类似的库是 Armadillo, 当然还有 opencv. Armadillo 与 matlab 在函数名称上更接近, 但是 TensorFlow 和 Ceres 使用了 eigen. 这里不讲究谁优谁劣, 入门阶段迅速掌握一个, 用起来就够了. 1. The Matrix Class 1) The first three template parameters of Matrix Matrix<typename Scala
1. Efficient Expression Refer to this post http://eigen.tuxfamily.org/dox/TopicWritingEfficientProductExpression.html, for dense matrix calculation. But what about sparse matrix product?? What does Eigen do when: - [Enhancement, unsolved] Sparse matr
这个周开始要着手实现网格水印的代码了,虽然还什么都不会,但也只能一步步摸索着往前走了. 我要实现的论文题目是<<Watermarking 3D Polygonal Meshes in the Mesh Spectral Domain>>,之前的博客中有过这篇论文的理论分析,看起来貌似不难,但动手实现起来的时候还是挺困难的.首先要解决的问题就是配置实验环境. 一开始我打算用Eigen对拉普拉斯矩阵进行特征值分解,因此就涉及到Eigen的配置.Eigen是一个开源的矩阵运算库,里面封装
一.概要 这两天想起来要做神经网络的作业了,要求用C++完毕神经网络的算法. 摆在面前的第一个问题就是,神经网络算法中大量用到了矩阵运算.可是C++不像matlab那样对矩阵运算有非常好的支持.本来准备自己写一个C++的矩阵运算的代码的,google了一下后.找到了几个不错的C++矩阵运算库,我选用的是Eigen这个C++矩阵运算库. Eigen有很丰富的功能: l 支持全部大小的矩阵运算,从非常小的大小固定的矩阵运算.到随意大的稠密矩阵的运算,甚至连稀疏矩阵的运算它也支持. l 支持当前全