首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
em算法python代码
2024-11-02
Python——EM(期望极大算法)教学(附详细代码与注解)
今天,我们详细的讲一下EM算法. 前提准备 Jupyter notebook 或 Pycharm 火狐浏览器或谷歌浏览器 win7或win10电脑一台 网盘提取csv数据 需求分析 实现高斯混合模型的 EM 算法(GMM_EM) 高斯混合模型是多个高斯模型的线性叠加而成的,高斯混合模型的概率分布表示如下: 其中,k表示模型的个数,αkα_kαk 是第 k 个模型的系数,表示出现该模型的概率,ϕ(x;μk,Σk) 是第 k 个高斯模型的概率分布. E步:样本 xix_ixi来自于第 k 个模型
从似然函数到EM算法(附代码实现)
1. 什么是EM算法 最大期望算法(Expectation-maximization algorithm,又译为期望最大化算法),是在概率模型中寻找参数最大似然估计或者最大后验估计的算法,其中概率模型依赖于无法观测的隐性变量. 最大期望算法经过两个步骤交替进行计算, 第一步是计算期望(E),利用对隐藏变量的现有估计值,计算其最大似然估计值: 第二步是最大化(M),最大化在E步上求得的最大似然值来计算参数的值.M步上找到的参数估计值被用于下一个E步计算中,这个过程不断交替进行. 极大似然估计用一句
手写算法-python代码实现KNN
原理解析 KNN-全称K-Nearest Neighbor,最近邻算法,可以做分类任务,也可以做回归任务,KNN是一种简单的机器学习方法,它没有传统意义上训练和学习过程,实现流程如下: 1.在训练数据集中,找到和需要预测样本最近邻的K个实例: 2.分别统计这K个实例所属的类别,最多的那个类别就是样本预测的类别(多数表决法): 对于回归任务而言,则是求这K个实例输出值的平均值(选择平均法): 因此,该算法的几个重点在于: 1.K值的选取,K值的不同直接会导致最终结果的不同: 选择较小的k值,就相当
k-近邻算法python代码实现(非常全)
1.k近邻算法是学习机器学习算法最为经典和简单的算法,它是机器学习算法入门最好的算法之一,可以非常好并且快速地理解机器学习的算法的框架与应用.它是一种经典简单的分类算法,当然也可以用来解决回归问题.2.kNN机器学习算法具有以下的特点:(1)思想极度简单(2)应用的数学知识非常少(3)解决相关问题的效果非常好(4)可以解释机器学习算法使用过程中的很多细节问题(5)更加完整地刻画机器学习应用的流程3.KNN算法pyhton代码实现如下: (1)解决分类问题的代码如下:#1-1输入任意的自定义数据集
tf–idf算法解释及其python代码实现(下)
tf–idf算法python代码实现 这是我写的一个tf-idf的简单实现的代码,我们知道tfidf=tf*idf,所以可以分别计算tf和idf值在相乘,首先我们创建一个简单的语料库,作为例子,只有四句话,每句表示一个文档 copus=['我正在学习计算机','它正在吃饭','我的书还在你那儿','今天不上班'] 由于中文需要分词,jieba分词是python里面比较好用的分词工具,所以选用jieba分词,文末是jieba的链接.首先对文档进行分词: import jieba copus=['我
tf–idf算法解释及其python代码
tf–idf算法python代码实现 这是我写的一个tf-idf的简单实现的代码,我们知道tfidf=tf*idf,所以可以分别计算tf和idf值在相乘,首先我们创建一个简单的语料库,作为例子,只有四句话,每句表示一个文档 copus=['我正在学习计算机','它正在吃饭','我的书还在你那儿','今天不上班'] 由于中文需要分词,jieba分词是python里面比较好用的分词工具,所以选用jieba分词,文末是jieba的链接.首先对文档进行分词: import jieba copus=['我
5. EM算法-高斯混合模型GMM+Lasso
1. EM算法-数学基础 2. EM算法-原理详解 3. EM算法-高斯混合模型GMM 4. EM算法-GMM代码实现 5. EM算法-高斯混合模型+Lasso 1. 前言 前面几篇博文对EM算法和GMM模型进行了介绍,本文我们通过对GMM增加一个惩罚项. 2. 不带惩罚项的GMM 原始的GMM的密度函数是 \[ p(\boldsymbol{x}|\boldsymbol{\pi},\boldsymbol{\mu},\boldsymbol{\Sigma})=\sum_{k=1}^K\pi_k\ma
EM 算法求解高斯混合模型python实现
注:本文是对<统计学习方法>EM算法的一个简单总结. 1. 什么是EM算法? 引用书上的话: 概率模型有时既含有观测变量,又含有隐变量或者潜在变量.如果概率模型的变量都是观测变量,可以直接使用极大似然估计法或者贝叶斯的方法进行估计模型参数,但是当模型含有隐藏变量时,就不能简单使用这些方法了.EM算法就是含有隐变量的概率模型参数的极大似然估计法,或者极大似然后验概率估计法. 2. EM 算法的一个小例子:三硬币模型 假设有3枚硬币,记作A,B,C.这些硬币的正面出现的概率分别为\(\pi\).\
EM算法求高斯混合模型參数预计——Python实现
EM算法一般表述: 当有部分数据缺失或者无法观察到时,EM算法提供了一个高效的迭代程序用来计算这些数据的最大似然预计.在每一步迭代分为两个步骤:期望(Expectation)步骤和最大化(Maximization)步骤,因此称为EM算法. 如果所有数据Z是由可观測到的样本X={X1, X2,--, Xn}和不可观測到的样本Z={Z1, Z2,--, Zn}组成的,则Y = X∪Z.EM算法通过搜寻使所有数据的似然函数Log(L(Z; h))的期望值最大来寻找极大似然预计,注意此处的h
高斯混合模型GMM与EM算法的Python实现
GMM与EM算法的Python实现 高斯混合模型(GMM)是一种常用的聚类模型,通常我们利用最大期望算法(EM)对高斯混合模型中的参数进行估计. 1. 高斯混合模型(Gaussian Mixture models, GMM) 高斯混合模型(Gaussian Mixture Model,GMM)是一种软聚类模型. GMM也可以看作是K-means的推广,因为GMM不仅是考虑到了数据分布的均值,也考虑到了协方差.和K-means一样,我们需要提前确定簇的个数. GMM的基本假设为数据是由几个不同的高
python机器学习笔记:EM算法
EM算法也称期望最大化(Expectation-Maximum,简称EM)算法,它是一个基础算法,是很多机器学习领域的基础,比如隐式马尔科夫算法(HMM),LDA主题模型的变分推断算法等等.本文对于EM算法,我们主要从以下三个方向学习: 1,最大似然 2,EM算法思想及其推导 3,GMM(高斯混合模型) 1,最大似然概率 我们经常会从样本观察数据中,找到样本的模型参数.最常用的方法就是极大化模型分布的对数似然函数.怎么理解呢?下面看我一一道来. 假设我们需要调查我们学习的男生和女生的身高分布.你
Python实现各种排序算法的代码示例总结
Python实现各种排序算法的代码示例总结 作者:Donald Knuth 字体:[增加 减小] 类型:转载 时间:2015-12-11我要评论 这篇文章主要介绍了Python实现各种排序算法的代码示例总结,其实Python是非常好的算法入门学习时的配套高级语言,需要的朋友可以参考下 在Python实践中,我们往往遇到排序问题,比如在对搜索结果打分的排序(没有排序就没有Google等搜索引擎的存在),当然,这样的例子数不胜数.<数据结构>也会花大量篇幅讲解排序.之前一段时间,由于需要,我复习了
数据关联分析 association analysis (Aprior算法,python代码)
1基本概念 购物篮事务(market basket transaction),如下表,表中每一行对应一个事务,包含唯一标识TID,和购买的商品集合.本文介绍一种成为关联分析(association analysis)的方法,这种方法,可以从下表可以提取出,{尿布}->牛奶. 两个关键问题:1大型数据计算量很大.2发现的某种模式可能是虚假,偶然发生的. 2问题定义 把数据可以转换为如下表的二元表示,非二元不在本文讨论范围 项集 项集的支持度计数: 关联规则: 我们要发现,满足最小支持度与最小置信度
隐马尔科夫模型,第三种问题解法,维比特算法(biterbi) algorithm python代码
上篇介绍了隐马尔科夫模型 本文给出关于问题3解决方法,并给出一个例子的python代码 回顾上文,问题3是什么, 下面给出,维比特算法(biterbi) algorithm 下面通过一个具体例子,来说明维比特算法(biterbi) 下面附上该解决该例题的python代码 import numpy as np #you must install the numpy A=np.array([[0.5,0.2,0.3],[0.3,0.5,0.2],[0.2,0.3,0.5]]) B=np.array(
tf–idf算法解释及其python代码实现(上)
tf–idf算法解释 tf–idf, 是term frequency–inverse document frequency的缩写,它通常用来衡量一个词对在一个语料库中对它所在的文档有多重要,常用在信息检索和文本挖掘中. 一个很自然的想法是在一篇文档中词频越高的词对这篇文档越重要,但同时如果这个词又在非常多的文档中出现的话可能就是很普通的词,没有多少信息,对所在文档贡献不大,例如‘的’这种停用词.所以要综合一个词在所在文档出现次数以及有多少篇文档包含这个词,如果一个词在所在文档出现次数很多同时整个
神经网络BP算法C和python代码
上面只显示代码. 详BP原理和神经网络的相关知识,请参阅:神经网络和反向传播算法推导 首先是前向传播的计算: 输入: 首先为正整数 n.m.p.t,分别代表特征个数.训练样本个数.隐藏层神经元个数.输出 层神经元个数. 当中(1<n<=100,1<m<=1000, 1<p<=100, 1<t<=10). 随后为 m 行,每行有 n+1 个整数.每行代表一个样本中的 n 个特征值 (x 1 , x 2 ,..., x n ) 与样本的 实际观測结果 y.特征值
15行python代码,帮你理解令牌桶算法
本文转载自: http://www.tuicool.com/articles/aEBNRnU 在网络中传输数据时,为了防止网络拥塞,需限制流出网络的流量,使流量以比较均匀的速度向外发送,令牌桶算法就实现了这个功能, 可控制发送到网络上数据的数目,并允许突发数据的发送. 什么是令牌 从名字上看令牌桶,大概就是一个装有令牌的桶吧,那么什么是令牌呢? 紫薇格格拿的令箭,可以发号施令,令行禁止.在计算机的世界中,令牌也有令行禁止的意思,有令牌,则相当于得到了进行操作的授权,没有令牌,就什么都不能做.
KNN算法原理(python代码实现)
kNN(k-nearest neighbor algorithm)算法的核心思想是如果一个样本在特征空间中的k个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性.简单地说,K-近邻算法采用测量不同特征值之间的距离方法进行分类. - 优点:精度高.对异常值不敏感.无数据输入假定. - 缺点:计算复杂度高.空间复杂度高. - 适用数据范围:数值型和标称型. 举个简单的例子,一群男生和一群女生,我们知道他们的身高和性别. 如下表格: 身高 性别 165 女 16
6. EM算法-高斯混合模型GMM+Lasso详细代码实现
1. 前言 我们之前有介绍过4. EM算法-高斯混合模型GMM详细代码实现,在那片博文里面把GMM说涉及到的过程,可能会遇到的问题,基本讲了.今天我们升级下,主要一起解析下EM算法中GMM(搞事混合模型)带惩罚项的详细代码实现. 2. 原理 由于我们的极大似然公式加上了惩罚项,所以整个推算的过程在几个地方需要修改下. 在带penality的GMM中,我们假设协方差是一个对角矩阵,这样的话,我们计算高斯密度函数的时候,只需要把样本各个维度与对应的\(\mu_k\)和\(\sigma_k\)计算一维
4. EM算法-高斯混合模型GMM详细代码实现
1. EM算法-数学基础 2. EM算法-原理详解 3. EM算法-高斯混合模型GMM 4. EM算法-高斯混合模型GMM详细代码实现 5. EM算法-高斯混合模型GMM+Lasso 1. 前言 EM的前3篇博文分别从数学基础.EM通用算法原理.EM的高斯混合模型的角度介绍了EM算法.按照惯例,本文要对EM算法进行更进一步的探究.就是动手去实践她. 2. GMM实现 我的实现逻辑基本按照GMM算法流程中的方式实现.需要全部可运行代码,请移步我的github. 输入:观测数据\(x_1,x_2,x
FP-growth算法高效发现频繁项集(Python代码)
FP-growth算法高效发现频繁项集(Python代码) http://blog.csdn.net/leo_xu06/article/details/51332428
热门专题
sqlsugar 多条增删 事务
java逆序输出数字
vuecheckbox的用法
ubuntu18.04配什么版本NS3
tp聚合查询count
数据库修改表的CHECK
python基础练习题
BCB BMP转YUV
python读写excel字体
java 注解 反射 工厂模式
wpf datacontext与itemsource
C# SynchronizationContext是否会等待
Arcgis Engine 弹窗
linux中文件的s权限怎么用
charles误点deny后如何恢复
如何修改mac下默认使用的jdk版本
springboot oracle 开始批量提交 配置
思科交换机环路检测命令
github assets太慢
linux查看usb的pid