了校赛,还有什么途径可以申请加入ACM校队? 覆盖的面积 Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 4823 Accepted Submission(s): 2398 Problem Description 给定平面上若干矩形,求出被这些矩形覆盖过至少两次的区域的面积. Input 输入数据的第一行是一个正整数T(1
描述 The Archeologists of the Current Millenium (ACM) now and then discover ancient artifacts located at vertices of regular polygons. The moving sand dunes of the desert render the excavations difficult and thus once three vertices of a polygon are di
题目: 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 分析: 实际上还是一道斐波那契数列的应用,要填2*n的大矩形,我们可以先在大矩形左侧竖着放置一个2*1的小矩形,此时右边还剩下2*(n-1)的区域,如果横着置于左上角需要两个2*1的小矩形,右边还剩下2*(n-2)的区域,那么方法数f(n) = f(n-1) + f(n-2). 程序: C++ class Solution { public: int rect
题意(中问题直接粘吧)矩形面积 Problem Description 小度熊有一个桌面,小度熊剪了很多矩形放在桌面上,小度熊想知道能把这些矩形包围起来的面积最小的矩形的面积是多少. Input 第一行一个正整数 T,代表测试数据组数(1≤T≤20),接下来 T 组测试数据. 每组测试数据占若干行,第一行一个正整数 N(1≤N<≤1000),代表矩形的数量.接下来 N 行,每行 8 个整数x1,y1,x2,y2,x3,y3,x4,y4,代表矩形的四个点坐标,坐标绝对值不会超过10000.
题目描述 在平面上有 n 个点(n <= 50),每个点用一对整数坐标表示.例如:当 n=4 时,4个点的坐标分另为:p1(1,1),p2(2,2),p3(3,6),P4(0,7),见图一. 这些点可以用 k 个矩形(1<=k<=4)全部覆盖,矩形的边平行于坐标轴.当 k=2 时,可用如图二的两个矩形 sl,s2 覆盖,s1,s2 面积和为 4.问题是当 n 个点坐标和 k 给出后,怎样才能使得覆盖所有点的 k 个矩形的面积之和为最小呢.约定:覆盖一个点的矩形面积为 0:覆盖平行于坐标轴
题目描述 Description 在平面上有 n 个点(n <= 50),每个点用一对整数坐标表示.例如:当 n=4 时,4个点的坐标分另为:p1(1,1),p2(2,2),p3(3,6),P4(0,7) 这些点可以用 k 个矩形(1<=k<4)全部覆盖,矩形的边平行于坐标轴.当 k=2 时,可用如图二的两个矩形 sl,s2 覆盖,s1,s2 面积和为 4.问题是当 n 个点坐标和 k 给出后,怎样才能使得覆盖所有点的 k 个矩形的面积之和为最小呢.约定:覆盖一个点的矩形面积为 0:覆盖
题四 矩形覆盖(存盘名NOIPG4) [问题描述]: 在平面上有 n 个点(n <= 50),每个点用一对整数坐标表示.例如:当 n=4 时,4个点的坐标分另为:p1(1,1),p2(2,2),p3(3,6),P4(0,7),见图一. 这些点可以用 k 个矩形(1<=k<=4)全部覆盖,矩形的边平行于坐标轴.当 k=2 时,可用如图二的两个矩形 sl,s2 覆盖,s1,s2 面积和为 4.问题是当 n 个点坐标和 k 给出后,怎样才能使得覆盖所有点的 k 个矩形的面积之和为最小呢.约定: