网络结构解读之inception系列五:Inception V4 在残差逐渐当道时,google开始研究inception和残差网络的性能差异以及结合的可能性,并且给出了实验结构. 本文思想阐述不多,主要是三个结构的网络和实验性能对比. Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning 论证残差和Inception结合对性能的影响(抛实验结果) 1.残差连接能加速Inception网
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.机器学习技术感兴趣的同学加入. 上一篇讲了深度学习方法(十):卷积神经网络结构变化--Maxout Networks,Network In Network,Global Average Pooling,本篇讲一讲Google的Inception系列net,以及还是Google的Xception.(扯一下,Google的Researcher们还是给了很多很棒的
InceptionV1 论文原文:Going deeper with convolutions 中英文对照 InceptionBN 论文原文:Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift 中英文对照 InceptionV2/V3 论文原文:Rethinking the Inception Architecture for Computer Visi
Google Inception Net,ILSVRC 2014比赛第一名.控制计算量.参数量,分类性能非常好.V1,top-5错误率6.67%,22层,15亿次浮点运算,500万参数(AlexNet 6000万).V1降低参数量目的,参数越多模型越庞大,需数据量越大,高质量数据昂贵:参数越多,耗费计算资源越大.模型层数更深,表达能力更强,去除最后全连接层,用全局平均池化层(图片尺寸变1x1),参数大减,模型训练更快,减轻过拟合(<Network in Network>论文),Inceptio
转载链接:https://www.jianshu.com/p/4e5b3e652639 Szegedy在2015年发表了论文Rethinking the Inception Architecture for Computer Vision,该论文对之前的Inception结构提出了多种优化方法,来达到尽可能高效的利用计算资源的目的.作者认为随意增大Inception的复杂度,后果就是Inception的错误率很容易飙升,还会成倍的增加计算量,所以必须按照一套合理的规则来优化Inception结构