首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
java使用GRPC调用TensorFlow-Serving
2024-10-20
tensorflow踩坑合集2. TF Serving & gRPC 踩坑
这一章我们借着之前的NER的模型聊聊tensorflow serving,以及gRPC调用要注意的点.以下代码为了方便理解做了简化,完整代码详见Github-ChineseNER ,里面提供了训练好的包括bert_bilstm_crf, bilstm_crf_softlexcion,和CWS+NER多任务在内的4个模型,可以开箱即用.这里tensorflow模型用的是estimator框架,整个推理环节主要分成:模型export,warmup,serving, client request四步
tensorflow 模型保存与加载 和TensorFlow serving + grpc + docker项目部署
TensorFlow 模型保存与加载 TensorFlow中总共有两种保存和加载模型的方法.第一种是利用 tf.train.Saver() 来保存,第二种就是利用 SavedModel 来保存模型,接下来以自己项目中的代码为例. 项目中模型的代码: class TensorFlowDKT(object): def __init__(self, config, batch_size): # 导入配置好的参数 self.hiddens = hiddens = config.modelConfig.h
Dapr 运用之 Java gRPC 调用篇
JAVA GRPC 服务与调用 安装协议编译器 下载对应的版本编译器,并把路径加入到环境变量中,执行以下命令生成代码 protoc -I=$SRC_DIR --java_out=$DST_DIR $SRC_DIR/addressbook.proto -I 表示源码所在文件夹位置,--java_out 表示输出路径,空格后表示具体的 proto 文件位置,以下为示例命令 protoc -I=C:\Users\JR\DaprDemos\java\examples\src\main\protos\ex
java版gRPC实战之二:服务发布和调用
欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS等: 本篇概览 本文是<java版gRPC实战>系列的第二篇,前文<用proto生成代码>将父工程.依赖库版本.helloworld.proto对应的java代码都准备好了,今天的任务是实战gRPC服务的开发和调用,实现的效果如下图: 本篇的具体操作如下: 开发名为local-serv
TensorFlow Serving实现多模型部署以及不同版本模型的调用
前提:要实现多模型部署,首先要了解并且熟练实现单模型部署,可以借助官网文档,使用Docker实现部署. 1. 首先准备两个你需要部署的模型,统一的放在multiModel/文件夹下(文件夹名字可以任意取),其目录结构如下: multiModel/├── model1 │ └── 00000123 │ ├── saved_model.pb │ └── variables │ ├── variables.data-00000-of-00001 │ └── variables.index ├── mo
tensorflow serving
1.安装tensorflow serving 1.1确保当前环境已经安装并可运行tensorflow 从github上下载源码 git clone --recurse-submodules https://github.com/tensorflow/serving 进入到serving目录下的tensorflow运行./configure,并安装步骤完成(需将 2问题解决的的步骤全操作完后执行安装步骤) 1.2.编译example代码 bazel build tensorflow_serving
Tensorflow Serving 模型部署和服务
http://blog.csdn.net/wangjian1204/article/details/68928656 本文转载自:https://zhuanlan.zhihu.com/p/23361413 ,原题:TensorFlow Serving 尝尝鲜 2016年,机器学习在 Alpha Go 与李世石的世纪之战后变得更加炙手可热.Google也在今年推出了 TensorFlow Serving 又加了一把火. TensorFlow Serving 是一个用于机器学习模型 serving
基于TensorFlow Serving的深度学习在线预估
一.前言 随着深度学习在图像.语言.广告点击率预估等各个领域不断发展,很多团队开始探索深度学习技术在业务层面的实践与应用.而在广告CTR预估方面,新模型也是层出不穷: Wide and Deep[1].DeepCross Network[2].DeepFM[3].xDeepFM[4],美团很多篇深度学习博客也做了详细的介绍.但是,当离线模型需要上线时,就会遇见各种新的问题: 离线模型性能能否满足线上要求.模型预估如何镶入到原有工程系统等等.只有准确的理解深度学习框架,才能更好地将深度学习部署到线
139、TensorFlow Serving 实现模型的部署(二) TextCnn文本分类模型
昨晚终于实现了Tensorflow模型的部署 使用TensorFlow Serving 1.使用Docker 获取Tensorflow Serving的镜像,Docker在国内的需要将镜像的Repository地址设置为阿里云的加速地址,这个大家可以自己去CSDN上面找 然后启动docker 2.使用Tensorflow 的 SaveModelBuilder保存Tensorflow的计算图模型,并且设置Signature, Signature主要用来标识模型的输入值的名称和类型 builder
TensorFlow Serving简介
一.TensorFlow Serving简介 TensorFlow Serving是GOOGLE开源的一个服务系统,适用于部署机器学习模型,灵活.性能高.可用于生产环境. TensorFlow Serving可以轻松部署新算法和实验,同时保持相同的服务器架构和API,它具有以下特性: 支持模型版本控制和回滚 支持并发,实现高吞吐量 开箱即用,并且可定制化 支持多模型服务 支持批处理 支持热更新 支持分布式模型 易于使用的inference api 为gRPC expose port 8500,为
docker部署tensorflow serving以及模型替换
Using TensorFlow Serving with Docker 1.Ubuntu16.04下安装docker ce 1-1:卸载旧版本的docker sudo apt-get remove docker docker-engine docker.io 1-2:安装可选内核模块从 Ubuntu 14.04 开始,一部分内核模块移到了可选内核模块包 ( linux-image-extra-* ) ,以减少内核软件包的体积.正常安装的系统应该会包含可选内核模块包,而一些裁剪后的
深度学习调用TensorFlow、PyTorch等框架
深度学习调用TensorFlow.PyTorch等框架 一.开发目标目标 提供统一接口的库,它可以从C++和Python中的多个框架中运行深度学习模型.欧米诺使研究人员能够在自己选择的框架内轻松建立模型,同时也简化了这些模型的产品离子化. 支持TensorFlow.PyTorch.TorchScript和Keras等深度学习框架. 使用一个API从任何支持的框架运行模型,运行TensorFlow模型看起来就像运行PyTorch模型. x = np.array([1, 2, 3, 4]) y =
学习笔记TF067:TensorFlow Serving、Flod、计算加速,机器学习评测体系,公开数据集
TensorFlow Serving https://tensorflow.github.io/serving/ . 生产环境灵活.高性能机器学习模型服务系统.适合基于实际数据大规模运行,产生多个模型训练过程.可用于开发环境.生产环境. 模型生命周期管理.模型先数据训练,逐步产生初步模型,优化模型.模型多重算法试验,生成模型管理.客户端(Client)向TensorFlow Severing请求模型,TensorFlow Severing返回适当模型给客户端.TensorFlow Serving
用C++调用tensorflow在python下训练好的模型(centos7)
本文主要参考博客https://blog.csdn.net/luoyexuge/article/details/80399265 [1] bazel安装参考:https://blog.csdn.net/luoyi131420/article/details/78585989 [2] 首先介绍下自己的环境是centos7,tensorflow版本是1.7,python是3.6(anaconda3). 要调用tensorflow c++接口,首先要编译tensorflow,要装bazel,要装pro
tensorflow serving 编写配置文件platform_config_file的方法
1.安装grpc gRPC 的安装: $ pip install grpcio 安装 ProtoBuf 相关的 python 依赖库: $ pip install protobuf 安装 python grpc 的 protobuf 编译工具: $ pip install grpcio-tools 2.在serving目录运行脚本,生成*_pb2.py文件 # run at root of tensorflow_serving repo TARGET_DIR="$1" python -
Tensorflow Serving介绍及部署安装
TensorFlow Serving 是一个用于机器学习模型 serving 的高性能开源库.它可以将训练好的机器学习模型部署到线上,使用 gRPC 作为接口接受外部调用.更加让人眼前一亮的是,它支持模型热更新与自动模型版本管理.这意味着一旦部署 TensorFlow Serving 后,你再也不需要为线上服务操心,只需要关心你的线下模型训练. TensorFlow Serving的典型的流程如下:学习者(Learner,比如TensorFlow)根据输入数据进行模型训练.等模型训练完成.验证之
java web应用调用python深度学习训练的模型
之前参见了中国软件杯大赛,在大赛中用到了深度学习的相关算法,也训练了一些简单的模型.项目线上平台是用java编写的web应用程序,而深度学习使用的是python语言,这就涉及到了在java代码中调用python语言的方法. 为了能在java应用中使用python语言训练的算法模型,我在网上找了很久.我大概找到了三种方法 1. java代码可以直接调用python代码,只需要下载相应的jar包就行.这种方式我没有尝试,只是觉得这样做使得java应用太过于依赖python的环境了.还有网上也有将py
如何用 tensorflow serving 部署服务
第一步,读一读这篇博客 https://www.jb51.net/article/138932.htm (浅谈Tensorflow模型的保存与恢复加载) 第二步: 参考博客: https://blog.csdn.net/u011734144/article/details/82107610 按照上述教程配置好相关文件之后(模型是下面tensorflow-serving中产生的,直接移到textcnnrnn中的)然后再执行下面命令: 首先启动: ljj@debian:~$ docker run -
138、Tensorflow serving 实现模型的部署
将Tensorflow模型部署成Restful接口 下面是实现过程,整个操作都是在Linux上面实现的,因为Tensorflow Serving 目前还只支持Linux 这个意义真的是革命性的,因为从此以后大家就可以将训练好的模型真正的 通过Restful接口与其他所有的ERP 或者 CRM系统进行集成啦 上面这个图片是 Server加载模型,并且成功运行 上面这张图片是调用Call Restful 接口的Python 程序来调用Server上面的模型进行批量识别, 由结果可见预测的错误率是 1
java版gRPC实战之一:用proto生成代码
欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS等: 关于<java版gRPC实战>系列 <java版gRPC实战>是欣宸原创的面向java程序员的gRPC开发笔记,与读者们一起通过实战来学习掌握gRPC的各个知识点: <java版gRPC实战>全系列链接 用proto生成代码 服务发布和调用 服务端流 客户端流 双向流
java版gRPC实战之三:服务端流
欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS等: <java版gRPC实战>全系列链接 用proto生成代码 服务发布和调用 服务端流 客户端流 双向流 客户端动态获取服务端地址 基于eureka的注册发现 关于gRPC定义的四种类型 本文是<java版gRPC实战>系列的第三篇,前文咱们实战体验了简单的RPC请求和响应,那种简
热门专题
snort的sid-msg.map文件
cesium 菜单插件下载
字面量要用const char*才对
linux系统下rabbitmq无法使用guest
spring validated 声明式事务
dubbo与eureka
Windows文件 Ubuntu解压乱码
程序池假死 打开很慢
python短信验证redis
K8 struts2下载
vmware三种网络模式设置
bitvise如何用公匙登陆
shell 取字符串字母
jmeter gui模式和非gui模式结果差别大
对hadoop认识5000字
wpf轻量级开源ui框架
gzip 解压缩到指定目录
javascript开发工具
android sip框架
Windows内核获取进程名