首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
java使用GRPC调用TensorFlow-Serving
2024-10-20
tensorflow踩坑合集2. TF Serving & gRPC 踩坑
这一章我们借着之前的NER的模型聊聊tensorflow serving,以及gRPC调用要注意的点.以下代码为了方便理解做了简化,完整代码详见Github-ChineseNER ,里面提供了训练好的包括bert_bilstm_crf, bilstm_crf_softlexcion,和CWS+NER多任务在内的4个模型,可以开箱即用.这里tensorflow模型用的是estimator框架,整个推理环节主要分成:模型export,warmup,serving, client request四步
tensorflow 模型保存与加载 和TensorFlow serving + grpc + docker项目部署
TensorFlow 模型保存与加载 TensorFlow中总共有两种保存和加载模型的方法.第一种是利用 tf.train.Saver() 来保存,第二种就是利用 SavedModel 来保存模型,接下来以自己项目中的代码为例. 项目中模型的代码: class TensorFlowDKT(object): def __init__(self, config, batch_size): # 导入配置好的参数 self.hiddens = hiddens = config.modelConfig.h
Dapr 运用之 Java gRPC 调用篇
JAVA GRPC 服务与调用 安装协议编译器 下载对应的版本编译器,并把路径加入到环境变量中,执行以下命令生成代码 protoc -I=$SRC_DIR --java_out=$DST_DIR $SRC_DIR/addressbook.proto -I 表示源码所在文件夹位置,--java_out 表示输出路径,空格后表示具体的 proto 文件位置,以下为示例命令 protoc -I=C:\Users\JR\DaprDemos\java\examples\src\main\protos\ex
java版gRPC实战之二:服务发布和调用
欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS等: 本篇概览 本文是<java版gRPC实战>系列的第二篇,前文<用proto生成代码>将父工程.依赖库版本.helloworld.proto对应的java代码都准备好了,今天的任务是实战gRPC服务的开发和调用,实现的效果如下图: 本篇的具体操作如下: 开发名为local-serv
TensorFlow Serving实现多模型部署以及不同版本模型的调用
前提:要实现多模型部署,首先要了解并且熟练实现单模型部署,可以借助官网文档,使用Docker实现部署. 1. 首先准备两个你需要部署的模型,统一的放在multiModel/文件夹下(文件夹名字可以任意取),其目录结构如下: multiModel/├── model1 │ └── 00000123 │ ├── saved_model.pb │ └── variables │ ├── variables.data-00000-of-00001 │ └── variables.index ├── mo
tensorflow serving
1.安装tensorflow serving 1.1确保当前环境已经安装并可运行tensorflow 从github上下载源码 git clone --recurse-submodules https://github.com/tensorflow/serving 进入到serving目录下的tensorflow运行./configure,并安装步骤完成(需将 2问题解决的的步骤全操作完后执行安装步骤) 1.2.编译example代码 bazel build tensorflow_serving
Tensorflow Serving 模型部署和服务
http://blog.csdn.net/wangjian1204/article/details/68928656 本文转载自:https://zhuanlan.zhihu.com/p/23361413 ,原题:TensorFlow Serving 尝尝鲜 2016年,机器学习在 Alpha Go 与李世石的世纪之战后变得更加炙手可热.Google也在今年推出了 TensorFlow Serving 又加了一把火. TensorFlow Serving 是一个用于机器学习模型 serving
基于TensorFlow Serving的深度学习在线预估
一.前言 随着深度学习在图像.语言.广告点击率预估等各个领域不断发展,很多团队开始探索深度学习技术在业务层面的实践与应用.而在广告CTR预估方面,新模型也是层出不穷: Wide and Deep[1].DeepCross Network[2].DeepFM[3].xDeepFM[4],美团很多篇深度学习博客也做了详细的介绍.但是,当离线模型需要上线时,就会遇见各种新的问题: 离线模型性能能否满足线上要求.模型预估如何镶入到原有工程系统等等.只有准确的理解深度学习框架,才能更好地将深度学习部署到线
139、TensorFlow Serving 实现模型的部署(二) TextCnn文本分类模型
昨晚终于实现了Tensorflow模型的部署 使用TensorFlow Serving 1.使用Docker 获取Tensorflow Serving的镜像,Docker在国内的需要将镜像的Repository地址设置为阿里云的加速地址,这个大家可以自己去CSDN上面找 然后启动docker 2.使用Tensorflow 的 SaveModelBuilder保存Tensorflow的计算图模型,并且设置Signature, Signature主要用来标识模型的输入值的名称和类型 builder
TensorFlow Serving简介
一.TensorFlow Serving简介 TensorFlow Serving是GOOGLE开源的一个服务系统,适用于部署机器学习模型,灵活.性能高.可用于生产环境. TensorFlow Serving可以轻松部署新算法和实验,同时保持相同的服务器架构和API,它具有以下特性: 支持模型版本控制和回滚 支持并发,实现高吞吐量 开箱即用,并且可定制化 支持多模型服务 支持批处理 支持热更新 支持分布式模型 易于使用的inference api 为gRPC expose port 8500,为
docker部署tensorflow serving以及模型替换
Using TensorFlow Serving with Docker 1.Ubuntu16.04下安装docker ce 1-1:卸载旧版本的docker sudo apt-get remove docker docker-engine docker.io 1-2:安装可选内核模块从 Ubuntu 14.04 开始,一部分内核模块移到了可选内核模块包 ( linux-image-extra-* ) ,以减少内核软件包的体积.正常安装的系统应该会包含可选内核模块包,而一些裁剪后的
深度学习调用TensorFlow、PyTorch等框架
深度学习调用TensorFlow.PyTorch等框架 一.开发目标目标 提供统一接口的库,它可以从C++和Python中的多个框架中运行深度学习模型.欧米诺使研究人员能够在自己选择的框架内轻松建立模型,同时也简化了这些模型的产品离子化. 支持TensorFlow.PyTorch.TorchScript和Keras等深度学习框架. 使用一个API从任何支持的框架运行模型,运行TensorFlow模型看起来就像运行PyTorch模型. x = np.array([1, 2, 3, 4]) y =
学习笔记TF067:TensorFlow Serving、Flod、计算加速,机器学习评测体系,公开数据集
TensorFlow Serving https://tensorflow.github.io/serving/ . 生产环境灵活.高性能机器学习模型服务系统.适合基于实际数据大规模运行,产生多个模型训练过程.可用于开发环境.生产环境. 模型生命周期管理.模型先数据训练,逐步产生初步模型,优化模型.模型多重算法试验,生成模型管理.客户端(Client)向TensorFlow Severing请求模型,TensorFlow Severing返回适当模型给客户端.TensorFlow Serving
用C++调用tensorflow在python下训练好的模型(centos7)
本文主要参考博客https://blog.csdn.net/luoyexuge/article/details/80399265 [1] bazel安装参考:https://blog.csdn.net/luoyi131420/article/details/78585989 [2] 首先介绍下自己的环境是centos7,tensorflow版本是1.7,python是3.6(anaconda3). 要调用tensorflow c++接口,首先要编译tensorflow,要装bazel,要装pro
tensorflow serving 编写配置文件platform_config_file的方法
1.安装grpc gRPC 的安装: $ pip install grpcio 安装 ProtoBuf 相关的 python 依赖库: $ pip install protobuf 安装 python grpc 的 protobuf 编译工具: $ pip install grpcio-tools 2.在serving目录运行脚本,生成*_pb2.py文件 # run at root of tensorflow_serving repo TARGET_DIR="$1" python -
Tensorflow Serving介绍及部署安装
TensorFlow Serving 是一个用于机器学习模型 serving 的高性能开源库.它可以将训练好的机器学习模型部署到线上,使用 gRPC 作为接口接受外部调用.更加让人眼前一亮的是,它支持模型热更新与自动模型版本管理.这意味着一旦部署 TensorFlow Serving 后,你再也不需要为线上服务操心,只需要关心你的线下模型训练. TensorFlow Serving的典型的流程如下:学习者(Learner,比如TensorFlow)根据输入数据进行模型训练.等模型训练完成.验证之
java web应用调用python深度学习训练的模型
之前参见了中国软件杯大赛,在大赛中用到了深度学习的相关算法,也训练了一些简单的模型.项目线上平台是用java编写的web应用程序,而深度学习使用的是python语言,这就涉及到了在java代码中调用python语言的方法. 为了能在java应用中使用python语言训练的算法模型,我在网上找了很久.我大概找到了三种方法 1. java代码可以直接调用python代码,只需要下载相应的jar包就行.这种方式我没有尝试,只是觉得这样做使得java应用太过于依赖python的环境了.还有网上也有将py
如何用 tensorflow serving 部署服务
第一步,读一读这篇博客 https://www.jb51.net/article/138932.htm (浅谈Tensorflow模型的保存与恢复加载) 第二步: 参考博客: https://blog.csdn.net/u011734144/article/details/82107610 按照上述教程配置好相关文件之后(模型是下面tensorflow-serving中产生的,直接移到textcnnrnn中的)然后再执行下面命令: 首先启动: ljj@debian:~$ docker run -
138、Tensorflow serving 实现模型的部署
将Tensorflow模型部署成Restful接口 下面是实现过程,整个操作都是在Linux上面实现的,因为Tensorflow Serving 目前还只支持Linux 这个意义真的是革命性的,因为从此以后大家就可以将训练好的模型真正的 通过Restful接口与其他所有的ERP 或者 CRM系统进行集成啦 上面这个图片是 Server加载模型,并且成功运行 上面这张图片是调用Call Restful 接口的Python 程序来调用Server上面的模型进行批量识别, 由结果可见预测的错误率是 1
java版gRPC实战之一:用proto生成代码
欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS等: 关于<java版gRPC实战>系列 <java版gRPC实战>是欣宸原创的面向java程序员的gRPC开发笔记,与读者们一起通过实战来学习掌握gRPC的各个知识点: <java版gRPC实战>全系列链接 用proto生成代码 服务发布和调用 服务端流 客户端流 双向流
java版gRPC实战之三:服务端流
欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS等: <java版gRPC实战>全系列链接 用proto生成代码 服务发布和调用 服务端流 客户端流 双向流 客户端动态获取服务端地址 基于eureka的注册发现 关于gRPC定义的四种类型 本文是<java版gRPC实战>系列的第三篇,前文咱们实战体验了简单的RPC请求和响应,那种简
热门专题
unity 和服务器使用http协议通信
对OVERLAPPED结构体进行初始化
python 判断是否为目录
vue axios分页
securecrt滚动条的粗细
js select设置默认选中
springboot网页展示日志
配置k8s拉镜像的secret
redis连接带密码的redis
ISS已有显示未能找到路径的一部分
P1115 最大子段和
mysql设置密码规则
androidstudio 打包 jar
ios uicollectionview头视图和组视图
windows启动springboot的jar
idea通过wsdl地址生产JavaBean
企业微信授权 获取登录人信息 40029
虚拟机安装Hbase
msi文件安装提示installUtilLib
oracle数据库创建只有查询权限的用户