import numpy as np from keras.datasets import reuters from keras import layers from keras import models from keras import optimizers from keras.utils.np_utils import to_categorical import matplotlib.pyplot as plt def vectorize_data(x, dim = 10000): r
#基于IMDB数据集的简单文本分类任务 #一层embedding层+一层lstm层+一层全连接层 #基于Keras 2.1.1 Tensorflow 1.4.0 代码: '''Trains an LSTM model on the IMDB sentiment classification task. The dataset is actually too small for LSTM to be of any advantage compared to simpler, much faster
首先,对需要导入的库进行导入,读入数据后,用jieba来进行中文分词 # encoding: utf-8 #载入接下来分析用的库 import pandas as pd import numpy as np import xgboost as xgb from tqdm import tqdm from sklearn.svm import SVC from keras.models import Sequential from keras.layers.recurrent import LST
# -*- coding: utf-8 -*- """ Auto Encoder Example. Using an auto encoder on MNIST handwritten digits. References: Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. "Gradient-based learning applied to document recognition." Proceeding