首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
keras 二分类 layers
2024-10-29
keras框架下的深度学习(二)二分类和多分类问题
本文第一部分是对数据处理中one-hot编码的讲解,第二部分是对二分类模型的代码讲解,其模型的建立以及训练过程与上篇文章一样:在最后我们将训练好的模型保存下来,再用自己的数据放入保存下来的模型中进行分类(在后面的文章中会详细讨论如何使用自己的数据去训练模型,或者让保存下来的模型去处理自己的数据).第三部分是多分类模型,多分类的过程和二分类很相似,只是在代码中有些地方需要做出调整. 第二部分是本文的重点. 一:one-hot编码 通过第一篇文章我们知道,对于使用keras来进行深度学习网络的搭建,
keras实现简单性别识别(二分类问题)
keras实现简单性别识别(二分类问题) 第一步:准备好需要的库 tensorflow 1.4.0 h5py 2.7.0 hdf5 1.8.15.1 Keras 2.0.8 opencv-python 3.3.0 numpy 1.13.3+mkl 所需要的人脸检测模块 mtcnn和opencv https://pan.baidu.com/s/1rhP7mcnAtiojhk8eiLroEw 第二步:准备数据集: 将性别不同的图片按照不同的分类放到不同的文件夹内. 数据集 h
1.keras实现-->自己训练卷积模型实现猫狗二分类(CNN)
原数据集:包含 25000张猫狗图像,两个类别各有12500 新数据集:猫.狗 (照片大小不一样) 训练集:各1000个样本 验证集:各500个样本 测试集:各500个样本 1= 狗,0= 猫 # 将图像复制到训练.验证和测试的目录 import os,shutil orginal_dataset_dir = 'kaggle_original_data/train' base_dir = 'cats_and_dogs_small' os.mkdir(base_dir)#保存新数据集的目录 tra
基于Keras的imdb数据集电影评论情感二分类
IMDB数据集下载速度慢,可以在我的repo库中找到下载,下载后放到~/.keras/datasets/目录下,即可正常运行.)中找到下载,下载后放到~/.keras/datasets/目录下,即可正常运行. 电影评论分类:二分类 二分类可能是机器学习最常解决的问题.我们将基于评论的内容将电影评论分类:正类和父类. IMDB数据集 IMDB数据集有5万条来自网络电影数据库的评论:其中2万5千条用来训练,2万5千条用来测试,每个部分正负评论各占50%. 划分训练集.测试集的必要性:不能在相同的数据
xgb, lgb, Keras, LR(二分类、多分类代码)
preprocess # 通用的预处理框架 import pandas as pd import numpy as np import scipy as sp # 文件读取 def read_csv_file(f, logging=False): print("==========读取数据=========") data = pd.read_csv(f) if logging: print(data.head(5)) print(f, "包含以下列") print(
tensorflow实现二分类
读万卷书,不如行万里路.之前看了不少机器学习方面的书籍,但是实战很少.这次因为项目接触到tensorflow,用一个最简单的深层神经网络实现分类和回归任务. 首先说分类任务,分类任务的两个思路: 如果是多分类,输出层为计算出的预测值Z3(1,classes),可以利用softmax交叉熵损失函数,将Z3中的值转化为概率值,概率值最大的即为预测值. 在tensorflow中,多分类的损失函数为: cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_w
Python深度学习案例1--电影评论分类(二分类问题)
我觉得把课本上的案例先自己抄一遍,然后将书看一遍.最后再写一篇博客记录自己所学过程的感悟.虽然与课本有很多相似之处.但自己写一遍感悟会更深 电影评论分类(二分类问题) 本节使用的是IMDB数据集,使用Jupyter作为编译器.这是我刚开始使用Jupyter,不得不说它的自动补全真的不咋地(以前一直用pyCharm)但是看在能够分块运行代码的份上,忍了.用pyCharm敲代码确实很爽,但是调试不好调试(可能我没怎么用心学),而且如果你完全不懂代码含义的话,就算你运行成功也不知道其中的含义,代码有点
Python深度学习读书笔记-6.二分类问题
电影评论分类:二分类问题 加载 IMDB 数据集 from keras.datasets import imdb (train_data, train_labels), (test_data, test_labels) = imdb.load_data(num_words=10000) 将整数序列编码为二进制矩阵(One-hot编码) import numpy as np def vectorize_sequences(sequences, dimension=10000): resul
NLP(二十)利用BERT实现文本二分类
在我们进行事件抽取的时候,我们需要触发词来确定是否属于某个特定的事件类型,比如我们以政治上的出访类事件为例,这类事件往往会出现"访问"这个词语,但是仅仅通过"访问"这个触发词来判断是否属于出访类事件是不可靠的,比如我们会碰到以下情况: 通过上面的例子,我们知道,像访问速度,访问量这种文档虽然出现了访问,但却不属于政治上的出访类事件.因此,这时候我们需要借助文本分类模型来判断,显然,这是一个二分类模型. 本文将会讲述如何利用BERT+DNN模型来判断文档是否属
电影评论分类:二分类问题(IMDB数据集)
IMDB数据集是Keras内部集成的,初次导入需要下载一下,之后就可以直接用了. IMDB数据集包含来自互联网的50000条严重两极分化的评论,该数据被分为用于训练的25000条评论和用于测试的25000条评论,训练集和测试集都包含50%的正面评价和50%的负面评价.该数据集已经经过预处理:评论(单词序列)已经被转换为整数序列,其中每个整数代表字典中的某个单词.加载数据集 from keras.datasets import imdb (train_data, train_labels), (t
NLP(二十二)利用ALBERT实现文本二分类
在文章NLP(二十)利用BERT实现文本二分类中,笔者介绍了如何使用BERT来实现文本二分类功能,以判别是否属于出访类事件为例子.但是呢,利用BERT在做模型预测的时候存在预测时间较长的问题.因此,我们考虑用新出来的预训练模型来加快模型预测速度. 本文将介绍如何利用ALBERT来实现文本二分类. 关于ALBERT ALBERT的提出时间大约是在2019年10月,其第一作者为谷歌科学家蓝振忠博士.ALBERT的论文地址为:https://openreview.net/pdf?id=H1
二分类问题 - 【老鱼学tensorflow2】
什么是二分类问题? 二分类问题就是最终的结果只有好或坏这样的一个输出. 比如,这是好的,那是坏的.这个就是二分类的问题. 我们以一个电影评论作为例子来进行.我们对某部电影评论的文字内容为好评和差评. 我们使用IMDB 数据集,它包含来自互联网电影数据库(IMDB)的 50 000 条严重两极分化的评论.数据集被分为用于训练的 25 000 条评论与用于测试的 25 000 条评论,训练集和测试集都包含 50% 的正面评论和 50% 的负面评论. 加载数据集 import tensorflow.k
二分类问题续 - 【老鱼学tensorflow2】
前面我们针对电影评论编写了二分类问题的解决方案. 这里对前面的这个方案进行一些改进. 分批训练 model.fit(x_train, y_train, epochs=20, batch_size=512) 这里在训练时增加了一个参数batch_size,使用 512 个样本组成的小批量,将模型训练 20 个轮次. 这个参数可以看成是在训练时不一次性在全部的训练集上进行,而是针对其中的512个题目分批次进行训练.有点类似做512道题目进行训练,然后看结果进行调整,而不是一次性做好25000道题目然
【原】Spark之机器学习(Python版)(二)——分类
写这个系列是因为最近公司在搞技术分享,学习Spark,我的任务是讲PySpark的应用,因为我主要用Python,结合Spark,就讲PySpark了.然而我在学习的过程中发现,PySpark很鸡肋(至少现在我觉得我不会拿PySpark做开发).为什么呢?原因如下: 1.PySpark支持的算法太少了.我们看一下PySpark支持的算法:(参考官方文档) 前面两个pyspark.sql和pyspark.streaming是对sql和streaming的支持.主要是读取数据,和streaming处
keras系列︱人脸表情分类与识别:opencv人脸检测+Keras情绪分类(四)
引自:http://blog.csdn.net/sinat_26917383/article/details/72885715 人脸识别热门,表情识别更加.但是表情识别很难,因为人脸的微表情很多,本节介绍一种比较粗线条的表情分类与识别的办法. Keras系列: 1.keras系列︱Sequential与Model模型.keras基本结构功能(一) 2.keras系列︱Application中五款已训练模型.VGG16框架(Sequential式.Model式)解读(二) 3.keras系列︱图像
Kaggle实战之二分类问题
0. 前言 1. MNIST 数据集 2. 二分类器 3. 效果评测 4. 多分类器与误差分析 5. Kaggle 实战 0. 前言 "尽管新技术新算法层出不穷,但是掌握好基础算法就能解决手头 90% 的机器学习问题." 本系列参考书 "Hands-on machine learning with scikit-learn and tensorflow"以及kaggle相关资料 1. MNIST 数据集 MNIST是最常用的用来实验分类模型的数据集,有7w多张手写0
准确率(Accuracy), 精确率(Precision), 召回率(Recall)和F1-Measure(对于二分类问题)
首先我们可以计算准确率(accuracy),其定义是: 对于给定的测试数据集,分类器正确分类的样本数与总样本数之比.也就是损失函数是0-1损失时测试数据集上的准确率. 下面在介绍时使用一下例子: 一个班级有20个女生,80个男生.现在一个分类器需要从100人挑选出所有的女生.该分类器从中选出了50人,其中20个女生,30个男生. 准确率是指分类器正确分类的比例.正确分类是指正确的识别了一个样本是正例还是负例.例如分类器正确识别了20个女生和50个男生,正确识别的样本数是70个,因此该分类器的准确
监督学习——logistic进行二分类(python)
线性回归及sgd/bgd的介绍: 监督学习--随机梯度下降算法(sgd)和批梯度下降算法(bgd) 训练数据形式: (第一列代表x1,第二列代表 x2,第三列代表 数据标签 用 0/1表示) 训练函数形式: y = sigmod(w0+w1*x1+w2*x2) 通过训练函数就能够得到参数列向量θ([θ0,θ1,-θn]^T),当输入样本列向量x([x0,x1,-,xn]),那么我们对样本x分类就可以通过上述公式计算出一个概率,如果这个概率大于0.5,我们就
Logistic回归二分类Winner or Losser----台大李宏毅机器学习作业二(HW2)
一.作业说明 给定训练集spam_train.csv,要求根据每个ID各种属性值来判断该ID对应角色是Winner还是Losser(0.1分类). 训练集介绍: (1)CSV文件,大小为4000行X59列; (2)4000行数据对应着4000个角色,ID编号从1到4001; (3)59列数据中, 第一列为角色ID,最后一列为分类结果,即label(0.1两种),中间的57列为角色对应的57种属性值. 二.思路分析及实现 2.1 思路分析 这是一个典型的二分类问题,结合课上所学内容,决定采用Log
matlab-逻辑回归二分类(Logistic Regression)
逻辑回归二分类 今天尝试写了一下逻辑回归分类,把代码分享给大家,至于原理的的话请戳这里 https://blog.csdn.net/laobai1015/article/details/78113214 (在这片博客的基础上我加了一丢丢东西). 用到的预测函数为 其中,h为预测函数(大于0.5为一类,小于等于0.5为另一类).θ为各个特征的参数.θ=[θ1,θ2,θ3...]T 损失函数J(θ)为 利用梯度下降算法进行参数的更新公式如下: 其中,α是学习率参数,λ是正则项参数,需要自己输入.
热门专题
webrtc STUN、TURN信令服务器
CefSharp 判断加载是否完成
spring framework 启动
arcpy批量添加字段
缓冲池(Buffer Pool) 的设计原理和管理机制
CSS column 缺失
EMVA1288的非均匀性内容
centos 安装minikube
three.js 随机生成线段
launch文件的写法args
计算属性实现购物车全选效果
linux 命令行 time
unity lookat函数
mackbook hibernatemode 设置
地图api 为啥没有村的行政区
C#控制CH341进行SPI
frameset怎么防止session失效
OpenWrt双网卡双网关配置
eclipse gbk乱码
springboot日志冲突