由于开发新的系统,需要将之前一个老的C/S应用的数据按照新的数据设计导入到新库中.此过程可能涉及到表结构不一致.大数据量(千万级,甚至上亿)等情况,包括异构数据的抽取.清洗等等工作.部分复杂的工作需要我们的DBA写代码用程序在JDBC或者Delphi中解决,而大部分稍简单的数据的迁移需要一个强大的ETL工具来解决.某日,技术经理让我找一个满足我们项目数据迁移需求的稳定.高效ETL工具.google了几把,网上大致有下列几款软件资料较多:Oracle的OWB(Oracle Warehouse Bu
由于开发新的系统,需要将之前一个老的C/S应用的数据按照新的数据设计导入到新库中.此过程可能涉及到表结构不一致.大数据量(千万级,甚至上亿)等情况,包括异构数据的抽取.清洗等等工作.部分复杂的工作需要我们的DBA写代码用程序在JDBC或者Delphi中解决,而大部分稍简单的数据的迁移需要一个强大的ETL工具来解决.某日,技术经理让我找一个满足我们项目数据迁移需求的稳定.高效ETL工具.google了几把,网上大致有下列几款软件资料较多:Oracle的OWB(Oracle Warehouse Bu
将昨日取得的众多的沪深龙虎榜数据整一整 提取文件夹内所有抓取下来的沪深龙虎榜数据,整理出沪深两市(含中小创)涨幅榜股票及前5大买入卖出资金净值,保存到csv文件 再手动使用数据透视表进行统计 原始数据: 整理后数据: 代码如下(如果觉得对于炒股又用,敬请使用): #coding=utf-8 import re import os import time import datetime def writeFile(file,stocks,BS,day): for s in stocks: allf
该系列视频已经搬运至bilibili: 点击查看 欢迎来到Python for Finance教程系列的第2部分. 在本教程中,我们将利用我们的股票数据进一步分解一些基本的数据操作和可视化. 我们将要使用的开始代码(在前面的教程中已经介绍过)是: import datetime as dt import matplotlib.pyplot as plt from matplotlib import style import pandas as pd import pandas_datareade