给定一个有向图 G = (V, E) ,对于任意一对顶点 u 和 v,有 u --> v 和 v --> u,亦即,顶点 u 和 v 是互相可达的,则说明该图 G 是强连通的(Strongly Connected).如下图中,任意两个顶点都是互相可达的. 对于无向图,判断图是否是强连通的,可以直接使用深度优先搜索(DFS)或广度优先搜索(BFS),从任意一个顶点出发,如果遍历的结果包含所有的顶点,则说明图是强连通的. 而对于有向图,则不能使用 DFS 或 BFS 进行直接遍历来判断.如下图中,
有向图 G = (V, E) 的一个强连通分支(SCC:Strongly Connected Components)是一个最大的顶点集合 C,C 是 V 的子集,对于 C 中的每一对顶点 u 和 v,有 u --> v 和 v --> u,亦即,顶点 u 和 v 是互相可达的. 实际上,强连通分支 SCC 将有向图分割为多个内部强连通的子图.如下图中,整个图不是强连通的,但可以被分割成 3 个强连通分支. 通过 Kosaraju 算法,可以在 O(V+E) 运行时间内找到所有的强连通分支.Ko
有向图的强连通分量: 相互可达关系,每一个集合都是有向图的一个强连通分量SCC. 把一个集合看成一个点,SCC就形成了一个有向无环图——DAG; 如果DFS选择不好,从A点开始DFS,就会把整张图遍历一遍.不是同一个SCC就混乱了,我们希望,可以利用SCC的拓扑序列,从后往前DFS,这样,每次都出来一个SCC,就不用分离了——Kosaraju算法. ——拓扑序列 反图——按照拓扑序列从后往前,就可以分离出每个SCC. #include <bits/stdc++.h> using n