首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
laravel 处理库存超卖
2024-09-05
PHP防止订单超卖,秒杀,限购,PHP高并发防止超卖代码实践
建表 1.订单表 CREATE TABLE `order` ( `id` int(11) NOT NULL AUTO_INCREMENT, `order_sn` varchar(45) NOT NULL DEFAULT '0' COMMENT '订单编号', `goods_id` int(11) NOT NULL DEFAULT '0' COMMENT '商品id', `uid` int(11) NOT NULL DEFAULT '0' COMMENT '用户id', PRIMARY KEY (
mysql处理高并发,防止库存超卖
先来就库存超卖的问题作描述:一般电子商务网站都会遇到如团购.秒杀.特价之类的活动,而这样的活动有一个共同的特点就是访问量激增.上千甚至上万人抢购一个商品.然而,作为活动商品,库存肯定是很有限的,如何控制库存不让出现超买,以防止造成不必要的损失是众多电子商务网站程序员头疼的问题,这同时也是最基本的问题. 从技术方面剖析,很多人肯定会想到事务,但是事务是控制库存超卖的必要条件,但不是充分必要条件. 举例: 总库存:4个商品 请求人:a.1个商品 b.2个商品 c.3个商品 程序如下: beginTr
Mysql在高并发情况下,防止库存超卖而小于0的解决方案
背景: 本人上次做申领campaign的PHP后台时,因为项目上线后某些时段同时申领的人过多,导致一些专柜的存货为负数(<0),还好并发量不是特别大,只存在于小部分专柜而且一般都是-1的状况,没有造成特别特别严重的后果,但还是要反思了自己的过错. 这次又有新的申领campaign,我翻看了上次的代码逻辑: 正文: [先select后update] beginTranse(开启事务) try{ $result = $dbca->query('select amount from s_st
<转> mysql处理高并发,防止库存超卖
先来就库存超卖的问题作描述:一般电子商务网站都会遇到如团购.秒杀.特价之类的活动,而这样的活动有一个共同的特点就是访问量激增.上千甚至上万人抢购 一个商品.然而,作为活动商品,库存肯定是很有限的,如何控制库存不让出现超买,以防止造成不必要的损失是众多电子商务网站程序员头疼的问题,这同时也是 最基本的问题. 从技术方面剖析,很多人肯定会想到事务,但是事务是控制库存超卖的必要条件,但不是充分必要条件. 举例: 总库存:4个商品 请求人:a.1个商品 b.2个商品 c.3个商品 程序如下: begin
MYSQL处理高并发,防止库存超卖(图解)
抢购场景完全靠数据库来扛,压力是非常大的,我们在最近的一次抢购活动改版中,采用了redis队列+mysql事务控制的方案,画了个简单的流程图: 先来就库存超卖的问题作描述:一般电子商务网站都会遇到如团购.秒杀.特价之类的活动,而这样的活动有一个共同的特点就是访问量激增.上千甚至上万人抢购一个商品.然而,作为活动商品,库存肯定是很有限的,如何控制库存不让出现超买,以防止造成不必要的损失是众多电子商务网站程序员头疼的问题,这同时也是最基本的问题. 从技术方面剖析,很多人肯定会想到事务,但是事务是控制
mysql悲观锁处理赠品库存超卖的情况
处理库存超卖的情况前,先了解下什么是乐观锁和悲观锁,下面的几篇博客已经介绍的比较详细了,我就不在赘述其原理了 [MySQL]悲观锁&乐观锁 对mysql乐观锁.悲观锁.共享锁.排它锁.行锁.表锁概念的理解 下面开始介绍悲观锁在实际中的应用了 //下订单 .......... try { M()->startTrans(); //判断商品是否有赠品 $give_gift=$ob->getGiveGoods($sku_nos); if(!empty($give_gift)){ $this-
MySQL防止库存超卖方法总结
订单超卖问题是涉及到库存项目的重中之重,这里我总结一下常用的方法 1.简单处理[update & select 合并](乐观锁) beginTranse(开启事务)$num = 1; try{ $dbca->query('update s_store set amount = amount - $num where amount>=$num and postID = 12345'); }catch($e Exception){ rollBack(回滚) } commit(提交事务) 还
记一次项目中解决 -- 并发减库存超卖问题过程(Java)
起因:项目中要做预约功能,首先每天的余票都是有上限的,自然不能出现超卖的情况 基于我们项目是单体分布式的springcloud部署,我想了下 第一种方法,直接mysql加行锁,要update这条库存数据时,在数据库表层面加上行锁,直接禁止其他线程读写,就确保了这条库存数据是被单线程操作的,不会出现超卖 第二种方法,把库存数据放Redis,需要update时对缓存数据加锁,也能保证该条库存数据被单线程操作 第三种方法,是最简单的方法,代码实现悲观锁,也是最不专业的方法,就是在最终修改库存的方法添加
使用 redis 减少 秒杀库存 超卖思路
由于数据库查询的及插入的操作 耗费的实际时间要耗费比redis 要多, 导致 多人查询时库存有,但是实际插入数据库时却超卖 redis 会有效的减少相关的延时,对于并发量相对较少的 可以一用 public function buy($goods_id = 0){ if(!$goods_id){ die("商品不存在!"); } $redis = new Redis(); $redis->connect('127.0.0.1',6379); $stock = 0; if(!$red
使用 redis 减少 秒杀库存 超卖思路 (转)
由于数据库查询的及插入的操作 耗费的实际时间要耗费比redis 要多, 导致 多人查询时库存有,但是实际插入数据库时却超卖 redis 会有效的减少相关的延时,对于并发量相对较少的 可以一用 1 public function buy($goods_id = 0){ 2 if(!$goods_id){ 3 die("商品不存在!"); 4 } 5 $redis = new Redis(); 6 $redis->connect('127.0.0.1',6379); 7 $sto
下订单更新订单表然后减少库存表中的数据,出现库存超卖,使用数据库和redis坚决库存超卖的问题
上面的代码更新库存的数据,存在多线程的问题,第一种方法使用synchronized关键字修饰的语句块代码,但是性能较低,并且还是存在问题的 在分布式的场景下,当前库存系统部署在多个tomcat上,即使加了同步锁,也会存在问题,一个线程访问tomcat1,另外一个线程同时访问tomcat2,两个都是进行减少库存操作也是存在问题的,synchronized同步不能跨jvm 上面的代码在一个jvm进程下面解决多线程是没有问题的,但是在分布式环境下部署多个tomcat下部署多个库存微服务,使用synch
【转】从msql数据库处理高并发商品超卖
今天王总又给我们上了一课,其实mysql处理高并发,防止库存超卖的问题,在去年的时候,王总已经提过:但是很可惜,即使当时大家都听懂了,但是在现实开发中,还是没这方面的意识.今天就我的一些理解,整理一下这个问题,并希望以后这样的课程能多点. 先来就库存超卖的问题作描述:一般电子商务网站都会遇到如团购.秒杀.特价之类的活动,而这样的活动有一个共同的特点就是访问量激增.上千甚至上万人抢购一个商品.然而,作为活动商品,库存肯定是很有限的,如何控制库存不让出现超买,以防止造成不必要的损失是众多电子商务网站
[转] 基于MySQL的秒杀核心设计(减库存部分)-防超卖与高并发
商品详情页面的静态化,varnish加速,秒杀商品库独立部署服务器这种就略过不讲了.只讨论库存部分的优化 mysql配置层面的优化可以参考我的这篇文章 <关于mysql innodb引擎性能优化的一点心得> 重点设计在数据库层面. 2张表: 第一张:判重表(buy_record),该用户有没秒杀过该商品 字段: id, uid, goods_id, addtime 第二张表:商品表 goods 字段: goods_id goods_num 方案1: start transaction; s
秒杀怎么样才可以防止超卖?基于mysql的事务和锁实现
Reference: http://blog.ruaby.com/?p=256 并发事务处理带来的问题? 相对于串行处理来说,并发事务处理能大大增加数据库资源的利用率,提高数据库系统的事务吞吐量,从而可以支持更多的用户.但并发事务处理也会带来一些问题,主要包括以下几种情况: 更新丢失(ost Update):当两个或多个事务选择同一行,然后基于最初选定的值更新该行时,由于每个事务都不知道其他事务的存在,就会发生丢失更新问题--最后的更新覆盖了由其他事务所做的更新.例如,两个编辑人员制作了同一文
以商品超卖为例讲解Redis分布式锁
本案例主要讲解Redis实现分布式锁的两种实现方式:Jedis实现.Redisson实现.网上关于这方面讲解太多了,Van自认为文笔没他们好,还是用示例代码说明. 一.jedis 实现 该方案只考虑Redis单机部署的场景 1.1 加锁 1.1.1 原理 jedis.set(String key, String value, String nxxx, String expx, int time) key: 使用key来当锁,因为key是唯一的; value: 我传的是唯一值(UUID),很多童鞋
使用Lua脚本通过原子减防止超卖
需求 双十二要搞一个一分钱门票抢购的活动. 分析 性能分析,抢购时会发生高并发,如果仅仅依靠Mysql数据库,有可能因为大量的请求频繁访问数据库造成服务器雪崩,所以考虑通过Redis减库存,最终的数据落地到DB中. 在高并发的情况下,还要考虑到超卖的问题,因而打算使用Lua脚本完成原子减的操作. 在这里,我们只针对减库存的操作进行分析. 实现 不使用原子操作,出现超卖的情况.第一步:先从redis中查出库存进行判断,第二步:如果库存>0,则进行减库存的操作. 代码实现: // 第一步:从redi
使用Redis分布式锁处理并发,解决超卖问题
一.使用Apache ab模拟并发压测 1.压测工具介绍 $ ab -n 100 -c 100 http://www.baidu.com/ -n表示发出100个请求,-c模拟100个并发,相当是100个人同时访问. 还可以这样写: $ ab -t 60 -c 100 http://www.baidu.com/ -t表示60秒,-c是100个并发,会在连续60秒内不停的发出请求. 使用ab工具模拟多线程并发请求,对发出负载的机器要求比较低,既不会占用很多cpu,也不会占用很多的内存,因此也是很多D
解决redis秒杀超卖的问题
我们再使用redis做秒杀程序的时候,解决超卖问题,是重中之重.以下是一个思路. 用上述思路去做的话,我们再用户点击秒杀的时候,只需要检测,kucun_count中是否能pop出数据,如果能pop出来则证明还有库存,且秒杀成功.而且pop是原子性的,即使很高的并发, 同时有很多用户访问,也是排队一个一个解决(并行转串行). 这样的话,就解决了超卖的问题.至于存入磁盘,我的上一篇文章中有介绍.有需要的朋友可以去看. 这是一个思路,具体的秒杀程序应该还有很多细节需要完善,但是核心问题已经解决了哈.
PHP+Redis实现高并发下商品超卖问题
对于一些有一定用户量的电商网站,如果只是单纯的使用关系型数据库(如MySQL.Oracle)来做抢购,对数据库的压力是非常大的,而且如果不使用好数据库的锁机制,还会导致商品.优惠券超卖的问题.我所在的公司也遇到了同样的问题,问题发生在优惠券被超量抢购上,在问题发生后我们开始想办法解决问题,由于自己使用redis比较多,我准备使用redis来解决这个问题.利用redis的高性能和事务特性来解决线上优惠券被超库存抢购的问题,下面我给出我临时解决这个问题的第一版的伪代码,去掉了一些细节: /** *
PHP+Redis链表解决高并发下商品超卖问题
目录 实现原理 实现步骤 上一篇文章聊了一下使用Redis事务来解决高并发商品超卖问题,今天我们来聊一下使用Redis链表来解决高并发商品超卖问题. 实现原理 使用redis链表来做,因为pop操作是原子的,即使有很多用户同时到达,也是依次执行,推荐使用. 实现步骤 第一步,先将商品库存入队列 /** * 添加商品数量到商品队列 * @param int $couponId 优惠券ID */ function addCoupons($couponId) { //1.初始化Redis连接 $red
热门专题
phpstorm 给类常量加注释
ROS Twist Odometry 消息控制机器人运动
部署dynamics crm不同用户的作用
C# webclient 下载文件进度不对
spark默认的分区方式
VS无法打开自己写的头文件
8$2amfTtY$##Y2XAvZro2##PAGE
iview 二级联动 第一个改变的时候刷新
二级子查询 join 其他表 无法看到主查询中的字段
http请求报文query体现
.propertie转yml
windows gobin 默认目录
Android读取在线excel文档
python 删除单字
内存数据是怎么存储的 电路
unity shader手册中文
sbulime 自动更新 关不掉
ModHeader 自动加载配制 Selenium
python接口封装
windows server 2012 r2区别