BILSTM+CRF中的条件随机场 tensorflow中crf关键的两个函数是训练函数tf.contrib.crf.crf_log_likelihood和解码函数tf.contrib.crf.viterbi_decode crf_log_likelihood(inputs, tag_indices, sequence_lengths, transition_params=None) Computes the log-likelihood of tag sequences in a CRF. A
http://blog.csdn.net/appleml/article/details/78664824 在理解CRF的时候费了一些功夫,将一些难以理解的地方稍微做了下标注,隔三差五看看加强记忆, 代码是pytorch文档上的example import torch import torch.autograd as autograd import torch.nn as nn import torch.optim as optim def to_scalar(var): #var是Variab
''' A Bidirectional Recurrent Neural Network (LSTM) implementation example using TensorFlow library. This example is using the MNIST database of handwritten digits (http://yann.lecun.com/exdb/mnist/) Long Short Term Memory paper: http://deeplearning.
前言:译者实测 PyTorch 代码非常简洁易懂,只需要将中文分词的数据集预处理成作者提到的格式,即可很快的就迁移了这个代码到中文分词中,相关的代码后续将会分享. 具体的数据格式,这种方式并不适合处理很多的数据,但是对于 demo 来说非常友好,把英文改成中文,标签改成分词问题中的 "BEMS" 就可以跑起来了. # Make up some training data training_data = [( "the wall street journal reported