Given a collection of intervals, find the minimum number of intervals you need to remove to make the rest of the intervals non-overlapping. Note: You may assume the interval's end point is always bigger than its start point. Intervals like [1,2] and
我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形. 请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 是不是发现看不懂,哈哈:编程题就是这样,一定要归纳,手写过程: n = 1,则 1; n = 2.则1,1横1,1竖:是不是有点眼熟: n= 3,则1,1,1横,1,1横1竖,1竖1,1,横:...还要再说么? 注意不能省2,因为0为0: public class Solution { public int RectCover(int target) { if(ta
In a given array nums of positive integers, find three non-overlapping subarrays with maximum sum. Each subarray will be of size k, and we want to maximize the sum of all 3*k entries. Return the result as a list of indices representing the starting p