症状:前向计算一切正常.梯度反向传播的时候就出现异常,梯度从某一层开始出现Nan值(Nan: Not a number缩写,在numpy中,np.nan != np.nan,是唯一个不等于自身的数). フォワードの計算に異常なしでも.その模型の変量をアプデートする時に異常な数字が出る.Pythonのプログラムにあるなら.Nanというもの現れることです. 根因:原因目前遇到的分为两种,其一——你使用了power(x, a) (a < 1)这样的算子,因为power函数这样的算子,在梯度反向传播阶段
backward函数 官方定义: torch.autograd.backward(tensors, grad_tensors=None, retain_graph=None, create_graph=False, grad_variables=None) Computes the sum of gradients of given tensors w.r.t. graph leaves.The graph is differentiated using the chain rule. If a
Tutorial: Triplet Loss Layer Design for CNN Xiao Wang 2016.05.02 Triplet Loss Layer could be a trick for further improving the accuracy of CNN. Today, I will introduce the whole process, and display the code for you. This tutorial mainly from the b
for i, (input, target) in enumerate(trainloader): # measure data loading time data_time.update(time.time() - end) input, target = input.cuda(), target.cuda() if i==2: def for_hook(module,input, output): print('output values:',output) handle2 = model.