首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
matlab霍夫变换检测直线
2024-08-30
Matlab 霍夫变换 ( Hough Transform) 直线检测
PS:好久没更新,因为期末到了,拼命复习中.复习久了觉得枯燥,玩玩儿霍夫变换直线检测 霍夫变换的基本原理不难,即便是初中生也很容易理解(至少在直线检测上是这样子的). 霍夫变换直线检测的基本原理:(不配图了,自己在白纸上画画,理解更深刻) 一步一步来: 1.在白纸上画出一个直角坐标系,任意给出一个点: 2.那么,对于点(x0,y0),经过这个点的直线必定满足y0=k*x0+b, 其中k是直线的斜率,b是直线的截距: 3.上式可以化成b=y0-k*x0, 可以看作是以-x0为斜率,以y0为截距,
OpenCV-Python教程(9、使用霍夫变换检测直线)
相比C++而言,Python适合做原型.本系列的文章介绍如何在Python中用OpenCV图形库,以及与C++调用相应OpenCV函数的不同之处.这篇文章介绍在Python中使用OpenCV的霍夫变换检测直线. 提示: 转载请详细注明原作者及出处,谢谢! 本文介绍在OpenCV-Python中使用霍夫变换检测直线的方法. 本文不介详细的理论知识,读者可从其他资料中获取相应的背景知识.笔者推荐清华大学出版社的<图像处理与计算机视觉算法及应用(第2版) >. 霍夫变换 Hough变换是经典的检测直
c++ 霍夫变换检测直线
通常这是一幅边缘图像,比如来自 Canny算子.cv:: Houghlines函数的输出是cV::Vec2f向量,每个元素都是一对代表检测到的直线的浮点数(p,0).在下例中我们首先应用 Canny算子获取图像轮廓,然后基于霍夫变换检测直线 这个函数的的表达直线的方式用的不习惯的话可以用下面这个. HoughLinesP函数的原型为: void HoughLinesP(InputArray image,OutputArray lines, double rho, double theta, in
matlab 霍夫变换—检测圆
function [hough_space,hough_circle,para] = hough_Circle(BW,step_r,step_angle,r_min,r_max,p) % %%%%%%%%%%%%%%%%%%%%%%%%%% % input % BW:二值图像: % step_r:检测的圆半径步长 % step_angle:角度步长,单位为弧度 % r_min:最小圆半径 % r_max:最大圆半径 % p:以p*hough_space的最大值为阈值,p取0,1之间的数 % %%
OpenCV——霍夫变换(直线检测、圆检测)
x #include <opencv2/opencv.hpp> #include <iostream> #include <math.h> using namespace cv; using namespace std; int main(int argc, char** argv) { Mat src, src_gray, dst; src = imread("test1.jpg"); char INPUT_TITLE[] = "inpu
Hough直线and圆环变换(如何检测直线、圆环)
1.霍夫变换 2.cv2.HoughLines() 返回值就是(ρ, θ).ρ 的单位是像素,θ 的单位是弧度.这个函数的第一个参 数是一个二值化图像,所以在进行霍夫变换之前要首先进行二值化,或者进行 Canny 边缘检测.第二和第三个值分别代表 ρ 和 θ 的精确度.第四个参数是 阈值,只有累加其中的值高于阈值时才被认为是一条直线,也可以把它看成能 检测到的直线的最短长度(以像素点为单位). 3.cv2.HoughCircles()
Python-Anaconda练习candy算子用于边缘提取,再用hough变换检测直线边缘
img: 待检测的图像. threshold: 阈值,可先项,默认为10 line_length: 检测的最短线条长度,默认为50 line_gap: 线条间的最大间隙.增大这个值可以合并破碎的线条.默认为10 返回: lines: 线条列表, 格式如((x0, y0), (x1, y0)),标明开始点和结束点. 下面,我们用canny算子提取边缘,然后检测哪些边缘是直线? import skimage.transform as st import matplotlib.pyplot as pl
hough变换检测直线和圆
图像测量和机器视觉作业: 提取图像中的直线和点的位置坐标,将其按一定顺序编码存入一文本文件,并在原图像上叠加显示出来. 下午实验了一下: 程序环境:vs2013(活动平台为x64)+opencv3.1 (活动平台也要改) 程序运行时会在程序源文件目录下生成: 1)textRecord.txt文件,记录检测到的直线和圆的信息: 2)hough_trans.bmp文件,为在原图上标记有检测到直线和圆的图像: 3)canny_result.bmp文件,为在边沿提取的图上标记提取的直线,还可以调节阈值,
matlab 人面检测
Create a detector object. faceDetector = vision.CascadeObjectDetector;Read input image. I = imread('visionteam.jpg');Detect faces. bboxes = step(faceDetector, I);Annotate detected faces. IFaces = insertObjectAnnotation(I, 'rectangle', bboxes, 'Face')
Python下opencv使用笔记(十一)(详解hough变换检测直线与圆)
http://blog.csdn.net/on2way/article/details/47028969 http://blog.csdn.net/mokeding/article/details/19615873
第三章 霍夫变换(Hough Transform)
主要内容: 霍夫变换的作用 霍夫变换检测直线的原理 霍夫变换检测圆的原理 OpenCV中的霍夫变换 1.霍夫变换检测直线原理 霍夫变换,英文名称Hough Transform,作用是用来检测图像中的直线或者圆等几何图形的. 一条直线的表示方法有好多种,最常见的是 ax+by+z=0 的形式,如果把b强行等于1,那么该形式变成了 y=mx+b. 假设有一幅图像,经过滤波,边缘检测等操作,变成了下面这张图的形状,怎么把这张图片中的直线提取出来.基本的思考流程是:如果直线ax+by=1在图片中,那么图
matlab-霍夫变换详解(判断正方形长方形)
霍夫变换 霍夫变换是1972年提出来的,最开始就是用来在图像中过检测直线,后来扩展能检测圆.曲线等. 直线的霍夫变换就是 把xy空间的直线 换成成 另一空间的点.就是直线和点的互换. 我们在初中数学中了解到,一条直线可以用如下的方程来表示:y=kx+b,k是直线的斜率,b是截距. 我们转换下变成:b=-kx+y.我们是不是也可以把(k,b)看作另外一个空间中的点?这就是k-b参数空间. 这样,我们就把一条x-y直线用一个(k,b)的点表示出来了. 我们看到,在x-y图像空间中的一个点,变成了k-
hough变换算法
1.算法思想 边缘检测比如canny算子可以识别出图像的边缘,但是实际中由于噪声和光照不均匀等因素,很多情况下获得的边缘点是不连续的,必须通过边缘连接将他们转换为有意义的边缘.Hough变化是一个重要的检测间断点边界形状的方法,它通过将图像坐标空间变化到参数空间来实现直线和曲线的拟合. 霍夫变换于1962年由Paul Hough 首次提出,后于1972年由Richard Duda和Peter Hart推广使用,经典霍夫变换用来检测图像中的直线,后来霍夫变换扩展到任意形状物体的识别,多为圆和椭圆.
OpenCV之Python学习笔记
OpenCV之Python学习笔记 直都在用Python+OpenCV做一些算法的原型.本来想留下发布一些文章的,可是整理一下就有点无奈了,都是写零散不成系统的小片段.现在看 到一本国外的新书<OpenCV Computer Vision with Python>,于是就看一遍,顺便把自己掌握的东西整合一下,写成学习笔记了.更需要的朋友参考. 阅读须知: 本文不是纯粹的译文,只是比较贴近原文的笔记: 请设法购买到出版社出版的书,支持正版. 从书名就能看出来本书是介绍在Pytho
OpenCV探索之路(十六):图像矫正技术深入探讨
刚进入实验室导师就交给我一个任务,就是让我设计算法给图像进行矫正.哎呀,我不太会图像这块啊,不过还是接下来了,硬着头皮开干吧! 那什么是图像的矫正呢?举个例子就好明白了. 我的好朋友小明给我拍了这几张照片,因为他的拍照技术不咋地,照片都拍得歪歪扭扭的,比如下面这些照片: 人民币 发票 文本 这些图片让人看得真不舒服!看个图片还要歪脖子看,实在是太烦人了!我叫小明帮我扫描一下一本教科书,小明把每一页书都拍成上面的文本那样了.好气啊那该怎么办呢?一页一页用PS来处理?1000页的矫正啊,当然交给计算
[OpenCV-Python] OpenCV 中的图像处理 部分 IV (六)
部分 IVOpenCV 中的图像处理 OpenCV-Python 中文教程(搬运)目录 23 图像变换 23.1 傅里叶变换目标本小节我们将要学习: • 使用 OpenCV 对图像进行傅里叶变换 • 使用 Numpy 中 FFT(快速傅里叶变换)函数 • 傅里叶变换的一些用处 • 我们将要学习的函数有:cv2.dft(),cv2.idft() 等原理 傅里叶变换经常被用来分析不同滤波器的频率特性.我们可以使用 2D 离散傅里叶变换 (DFT) 分析图像的频域特性.实现 DFT 的一个快速算法被称
《Python计算机视觉编程》
<Python计算机视觉编程> 基本信息 作者: (美)Jan Erik Solem 译者: 朱文涛 袁勇 丛书名: 图灵程序设计丛书 出版社:人民邮电出版社 ISBN:9787115352323 上架时间:2014-6-10 出版日期:2014 年7月 开本:16开 页码:1 版次:1-1 所属分类:计算机 > 软件与程序设计 > Python 更多关于>>><Python计算机视觉编程> 编辑推荐 Amazon.com计算机视觉类图书第一名! 专门
图像矫正技术深入探讨(opencv)
刚进入实验室导师就交给我一个任务,就是让我设计算法给图像进行矫正.哎呀,我不太会图像这块啊,不过还是接下来了,硬着头皮开干吧! 那什么是图像的矫正呢?举个例子就好明白了. 我的好朋友小明给我拍了这几张照片,因为他的拍照技术不咋地,照片都拍得歪歪扭扭的,比如下面这些照片: 人民币 发票 文本 这些图片让人看得真不舒服!看个图片还要歪脖子看,实在是太烦人了!我叫小明帮我扫描一下一本教科书,小明把每一页书都拍成上面的文本那样了.好气啊那该怎么办呢?一页一页用PS来处理?1000页的矫正啊,当然交给计算
opencv实战——图像矫正算法深入探讨
摘要 在机器视觉中,对于图像的处理有时候因为放置的原因导致ROI区域倾斜,这个时候我们会想办法把它纠正为正确的角度视角来,方便下一步的布局分析与文字识别,这个时候通过透视变换就可以取得比较好的裁剪效果. 本次实战,对于图像的矫正使用了两种矫正思路: 针对边缘比较明显的图像,使用基于轮廓提取的矫正算法. 针对边缘不明显,但是排列整齐的文本图像,使用了基于霍夫直线探测的矫正算法. 基于轮廓提取的矫正算法 整体思路: 图片灰度化,二值化 检测轮廓,并筛选出目标轮廓(通过横纵比或面积去除干扰轮廓) 获取
OpenCV图像处理与视频分析详解
1.OpenCV4环境搭建 VS2017新建一个控制台项目 配置包含目录 配置库目录 配置链接器 配置环境变量 重新启动VS2017 2.第一个图像显示程序 main.cpp #include<opencv2/opencv.hpp> #include<iostream> using namespace cv; using namespace std; int main(int argc, char** argv) { Mat src = imread("D:/images
热门专题
c#语言解决汉诺塔问题
Cisco基于IKEv1的IPSec VPN配置
jedis和redistemplate用哪个
spl_autoload_register()函数的语法格式
mac navicat premium汉化
vue3 leaflet layergroup切换图层报错
卡刷如何跳过签名认证
caffe和dlib
buuctf 面具下的flag
docker contos7 宝塔连不上 释放8888
element 嵌套别人的网页
datagrid将表头修改为中文
bootstrap宽屏设备(大桌面)对应多少分辨率
Windows C语言监视键盘
vue3 使用qiankun 图片404
arduino 方向盘
oracle 匹配是否有中文
kubernetes中ceph存储池的设计
div的display变成none如何获取宽度vue
openvpen 站群搭建 管理界面