首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
Matlab 斯皮尔曼等级相关
2024-09-02
Spearman Rank(斯皮尔曼等级)相关系数及MATLAB实现
转自:http://blog.csdn.net/wsywl/article/details/5859751 Spearman Rank(斯皮尔曼等级)相关系数 1.简介 在统计学中,斯皮尔曼等级相关系数以Charles Spearman命名,并经常用希腊字母ρ(rho)表示其值.斯皮尔曼等级相关系数用来估计两个变量X.Y之间的相关性,其中变量间的相关性可以使用单调函数来描述.如果两个变量取值的两个集合中均不存在相同的两个元素,那么,当其中一个变量可以表示为另一个变量的很好的单调函数时(即两个变量
斯皮尔曼等级相关(Spearman’s correlation coefficient for ranked data)
sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share pearsonr皮尔森共线系数要求: 1.每个变量数据集符合正态分布 2. p值代表极端值出现概率,样本量小时p值不可靠,但样本量大于500时,p值具有
Spearman(斯皮尔曼) 等级相关
Spearman相关系数又称秩相关系数,是利用两变量的秩次大小作线性相关分析,对原始变量的分布不作要求,属于非参数统计方法,适用范围要广些.对于服从Pearson相关系数的数据亦可计算Spearman相关系数,但统计效能要低一些.Pearson相关系数的计算公式可以完全套用Spearman相关系数计算公式,但公式中的x和y用相应的秩次代替即可. 斯皮尔曼等级相关是根据等级资料研究两个变量间相关关系的方法.它是依据两列成对等级的各对等级数之差来进行计算的,所以又称为“等级差数法”. 斯皮尔曼等级相
Spearman Rank(斯皮尔曼等级)相关系数
转自:http://blog.csdn.net/wsywl/article/details/5859751 1.简介 在统计学中,斯皮尔曼等级相关系数以Charles Spearman命名,并经常用希腊字母ρ(rho)表示其值.斯皮尔曼等级相关系数用来估计两个变量X.Y之间的相关性,其中变量间的相关性可以使用单调函数来描述.如果两个变量取值的两个集合中均不存在相同的两个元素,那么,当其中一个变量可以表示为另一个变量的很好的单调函数时(即两个变量的变化趋势相同),两个变量之间的ρ可以达到+1或-1
【Matlab开发】matlab中bar绘图设置与各种距离度量
[Matlab开发]matlab中bar绘图设置与各种距离度量 标签(空格分隔): [Matlab开发] [机器学习] 声明:引用请注明出处http://blog.csdn.net/lg1259156776/ Matlab Bar图如何为每个bar设置不同颜色 data = [3, 7, 5, 2;4, 3, 2, 9;6, 6, 1, 4]; b = bar(data); 使用bar绘制非常直观简单,但有时需要突出显示某一个bar,比如该bar是一个标杆,用来衡量其bar的高度,所以可以用醒目
学习笔记78—三大统计相关系数:Pearson、Spearman秩相关系数、kendall等级相关系数
****************************************************** 如有谬误,请联系指正.转载请注明出处. 联系方式: e-mail: heyi9069@gmail.com QQ: 3309198330 ****************************************************** 统计相关系数简介 由于使用的统计相关系数比较频繁,所以这里就利用几篇文章简单介绍一下这些系数. 相关系数:考察两个事物(在数据里我们称之为变量)
三大统计相关系数:Pearson、Spearman秩相关系数、kendall等级相关系数
统计相关系数简介 由于使用的统计相关系数比较频繁,所以这里就利用几篇文章简单介绍一下这些系数. 相关系数:考察两个事物(在数据里我们称之为变量)之间的相关程度. 如果有两个变量:X.Y,最终计算出的相关系数的含义可以有如下理解: (1).当相关系数为0时,X和Y两变量无关系. (2).当X的值增大(减小),Y值增大(减小),两个变量为正相关,相关系数在0.00与1.00之间. (3).当X的值增大(减小),Y值减小(增大),两个变量为负相关,相关系数在-1.00与0.00之间. 相关系数的绝对值
一元回归1_基础(python代码实现)
python机器学习-乳腺癌细胞挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share 机器学习,项目统计联系QQ:231469242 目录 1.基本概念 2.SSE/SSR/SST可视化 3.简单回归分为两类 4.一元回归公式 5.估计的
Mahout推荐算法基础
转载自(http://www.geek521.com/?p=1423) Mahout推荐算法分为以下几大类 GenericUserBasedRecommender 算法: 1.基于用户的相似度 2.相近的用户定义与数量 特点: 1.易于理解 2.用户数较少时计算速度快 GenericItemBasedRecommender 算法: 1.基于item的相似度 特点: 1.item较少时就算速度更快 2.当item的外部概念易于理解和获得是非常有用 SlopeOneRecommender(itemB
ITU-R BT.1788建议书 对多媒体应用中视频质量的主观评估方法
ITU-R BT.1788建议书 对多媒体应用中视频质量的主观评估方法 (ITU‑R 102/6号研究课题) (2007年) 范围 数字广播系统允许提供多媒体和数据广播应用,包括视频.音频.静态图像.文本和图表.本建议书规定评估多媒体应用视频质量的非交互式主观评估方法. 国际电联无线电通信全会, 考虑到 a) 许多国家正在引入数字广播系统: b) 利用数字广播系统,已经引入或计划引入包括视频.音频.静态图像.文本.图表等的多媒体和数据广播服务: c) 多
一元回归_ols参数解读(推荐AAA)
sklearn实战-乳腺癌细胞数据挖掘(博客主亲自录制视频教程) https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share 多重共线性测试需要改进 文件夹需要两个包 python3.0 anaconda normality_check.py 正太检验 # -*- cod
一元回归_R相关系数_多重检验
sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share 文件夹需要两个包 normality_check.py # -*- coding: utf-8 -*- ''' Author:Toby QQ:2314
图像质量评价-NQM和WPSNR
王保全. 基于混合专家模型的快速图像超分辨率方法研究与实现[D]. 2015. PSNR 和SSIM 在有时候并不能很确切的表示图像质量 标准,该论文中根据一定量的人为的感知评分作为参考,用斯皮尔曼等级相关 系数来验证各个图像质量评价指标的有效性,目标是找到更符合人眼观察的图 像质量评价标准.除了 PSNR 和 SSIM ,该论文还对比了其他几个图像质量评价标准: 信息保真度(Information Fidelity Criterion ,IFC)[43] . 多尺度结构相似度 (Multi-s
r_action
皮尔逊相关系数 斯皮尔曼等级相关(Spearman Rank Correlation) http://wiki.mbalib.com/wiki/斯皮尔曼等级相关 从表中的数字可以看出,工人的考试成绩愈高其产量也愈高,二者之间的联系程度是很一致的,但是相关系数r=0.676 并不算太高,这是由于它们之间的关系并不是线性的,如果分别按考试成绩和产量高低变换成等级(见上表第3.4列),则可以计算它们之间的等级相关系数为1. Kendall tau rank correlation coefficien
brdd 惰性执行 mapreduce 提取指定类型值 WebUi 作业信息 全局临时视图 pyspark scala spark 安装
[rdd 惰性执行] 为了提高计算效率 spark 采用了哪些机制 1-rdd 基于分布式内存数据集进行运算 2-lazy evaluation :惰性执行,即rdd的变换操作并不是在运行该代码时立即执行,而仅记录下转换操作的对象:只有当运行到一个行动代码时,变换操作的计算逻辑才真正执行. http://spark.apache.org/docs/latest/rdd-programming-guide.html#resilient-distributed-datasets-rdds [ rd
matlab 相关性分析
Pearson相关系数 考察两个事物(在数据里我们称之为变量)之间的相关程度,简单来说就是衡量两个数据集合是否在一条线上面.其计算公式为: 或或 N表示变量取值的个数. 相关系数r的值介于–1与+1之间,即–1≤r≤+1.其性质如下: 当r>0时,表示两变量(当X的值增大(减小),Y值增大(减小))正相关,r<0时,两变量为负相关(当X的值增大(减小),Y值减小(增大)). 当|r|=1时,表示两变量为完全线性相关,即为函数关系. 当r=0时,表示两变量间无线性相关关系. 当0<|r|&
数据质量、特征分析及一些MATLAB函数
MATLAB数据分析工具箱 MATLAB工具箱主要含有的类别有: 数学类.统计与优化类.信号处理与通信类.控制系统设计与分析类.图像处理类.测试与测量类.计算金融类.计算生物类.并行计算类.数据库访问与报告类. MATLAB 代码生成类. MATLAB 应用发布类. 每个类别内含有一个或多个工具箱. 比如数学.统计与优化类别就包含有曲线拟合工具箱.优化工具箱.神经网络工具箱.统计工具箱等. MATLAB 应用发布类别主要包含MATLAB和其他语言的混合编译.编程,包括C.C#.Java等. MA
Matlab 绘制三维立体图(以地质异常体为例)
前言:在地球物理勘探,流体空间分布等多种场景中,定位空间点P(x,y,x)的物理属性值Q,并绘制三维空间分布图,对我们洞察空间场景有十分重要的意义. 1. 三维立体图的基本要件: 全空间网格化 网格节点的物理属性值 2.数据准备 数据不易贴,我放在了百度网盘:点击下载数据 大概如下形式: TIP: 这里的数据矩阵为v(5276),可以看成一本27页纸,每页绘制了5*6的网格,然后27页纸叠在一起.当你理解本图绘制后,数据可以随意制作. 3.主要函数:slice.isosurface.patch
Matlab slice方法和包络法绘制三维立体图
前言:在地球物理勘探,流体空间分布等多种场景中,定位空间点P(x,y,x)的物理属性值Q,并绘制三维空间分布图,对我们洞察空间场景有十分重要的意义. 1. 三维立体图的基本要件: 全空间网格化 网格节点的物理属性值 2.数据准备 数据不易贴,我放在了百度网盘:点击下载数据 大概如下形式: TIP: 这里的数据矩阵为v(5276),可以看成一本27页纸,每页绘制了5*6的网格,然后27页纸叠在一起.当你理解本图绘制后,数据可以随意制作. 3.主要函数:slice.isosurface.patch
Matlab 高斯_拉普拉斯滤波器处理医学图像
前言:本程序是我去年实现论文算法时所做.主要功能为标记切割肝脏区域.时间有点久,很多细节已经模糊加上代码做了很多注释,因此在博客中不再详述. NOTE: 程序分几大段功能模块,仔细阅读,对解决医学图像还是有一定的借鉴意义 想借鉴本文的一定要仔细阅读代码和注释,中间有人机交互部分,空跑会抛异常 .dcm数据,我放到了我的百度云盘,有兴趣的可以下载,实测一下代码.dcm数据连接 clc,clear img_1=dicomread('10011.dcm');%读取dcm文件 (所谓的灰度值) meta
热门专题
mina框架怎样响应controller
jmeter 常数吞吐量定时器 的 时间间隔是多少
centos7.9 调整cpu 的主频率
live555 延时优化
inspect工具官方下载
JLMPAY授权系统
cesium中的clock如何使用tick方法
如何修改linux python解释器的正确指向
cefsharp 基础知识
XLSX将JSON数据导出到excel 数据与表头对应
外接设备怎么完全弹出查看占用
部署OVF模板失败,throwableproxy.cause
任意值 partition算法
jquery on怎么传递event
strongswan IKEV2协议
c#hslcommunication 高速读取
如何判断图的两点是否可达
javaJDBC 调用clickhouse 查询
CocosCreator开发框架
Android button 吐司