在本篇博文当中,笔者采用了卷积神经网络来对手写数字进行识别,采用的神经网络的结构是:输入图片——卷积层——池化层——卷积层——池化层——卷积层——池化层——Flatten层——全连接层(64个神经元)——全连接层(500个神经元)——softmax函数,最后得到分类的结果.Flatten层用于将池化之后的多个二维数组展开成一维数组,再灌入全连接层的神经元当中. 首先导包: import keras from keras import layers from keras import models
import torch import numpy as np import torch.nn as nn from torch.autograd import Variable import torch.optim as optim from torch.utils.data import DataLoader from torchvision import datasets, transforms batch_size = 64 learning_rate = 1e-2 num_epoche
网络:两层卷积,两层全连接,一层softmax 代码: import numpy as np from keras.utils import to_categorical from keras import Sequential from keras import layers from keras import optimizers from keras.datasets import mnist from PIL import Image (train_x, train_y), (test_