首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
Movielens 20M dataset的样本数
2024-09-02
推荐系统:MovivLens20M数据集解析
MovieLens 是历史最悠久的推荐系统.它由美国 Minnesota 大学计算机科学与工程学院的 GroupLens 项目组创办,是一个非商业性质的.以研究为目的的实验性站点.MovieLens 主要使用 Collaborative Filtering 和 Association Rules 相结合的技术,向用户推荐他们感兴趣的电影. 参考资料:movieLens-百度百科 . 电影数据集总结 数据集地址: https://grouplens.org/datasets/moviel
DataTable求列的最大值、最小值、平均值和样本数
与sql聚合函数相似,会屏蔽null table.Compute("max(ColumnName)", "true"); table.Compute("min(ColumnName)", "true"); table.Compute("avg(ColumnName)", "true"); table.Compute("count(ColumnName)", "
手写KMeans算法
KMeans算法是一种无监督学习,它会将相似的对象归到同一类中. 其基本思想是: 1.随机计算k个类中心作为起始点. 将数据点分配到理其最近的类中心. 3.移动类中心. 4.重复2,3直至类中心不再改变或者达到限定迭代次数. 具体的实现如下: from numpy import * import matplotlib.pyplot as plt import pandas as pd # Load dataset url = "https://archive.ics.uci.edu/ml/mac
sklearn dataset 模块学习
sklearn.datasets官网:http://scikit-learn.org/stable/datasets/ sklearn.datasets 模块主要提供一些导入.在线下载及本地生成数据集的方法,可以通过 dir 或 help 命令查看,会发现主要有三种形式:load_<dataset_name>.fetch_<dataset_name> 及 make_<dataset_name> 的方法 sklearn 的数据集有好多个种 自带的小数据集(packaged
使用movielens数据集动手实现youtube推荐候选集生成
综述 之前在博客中总结过nce损失和YouTuBe DNN推荐;但大多都还是停留在理论层面,没有实践经验.所以笔者想借由此文继续深入探索YouTuBe DNN推荐,另外也进一步总结TensorFlow使用姿势.另外本代码仅自己学习练习使用,如有不妥地方欢迎讨论. 第一步,搞定特征和样本 # 网络参数,在inference_fn进行初始化 weights = {} # 训练集header,也用于input_fn _CSV_COLUMNS = [] # label list最大长度 MAX_NUM_
Pytorch Dataset和Dataloader 学习笔记(二)
Pytorch Dataset & Dataloader Pytorch框架下的工具包中,提供了数据处理的两个重要接口,Dataset 和 Dataloader,能够方便的使用和加载自己的数据集. 数据的预处理,加载数据并转化为tensor格式 使用Dataset构建自己的数据 使用Dataloader装载数据 [数据]链接:https://pan.baidu.com/s/1gdWFuUakuslj-EKyfyQYLA 提取码:10d4 复制这段内容后打开百度网盘手机App,操作更方便哦 数据的
推荐系统系列(一):FM理论与实践
背景 在推荐领域CTR(click-through rate)预估任务中,最常用到的baseline模型就是LR(Logistic Regression).对数据进行特征工程,构造出大量单特征,编码之后送入模型.这种线性模型的优势在于,运算速度快可解释性强,在特征挖掘完备且训练数据充分的前提下能够达到一定精度.但这种模型的缺点也是较为明显的: 模型并未考虑到特征之间的关系 \(y=w_0+\sum_{i=1}^{n}w_ix_i\) .在实践经验中,对特征进行交叉组合往往能够更好地提升模型效果.
UFLDL 教程三总结与答案
主成分分析(PCA)是一种能够极大提升无监督特征学习速度的数据降维算法.更重要的是,理解PCA算法,对实现白化算法有很大的帮助,很多算法都先用白化算法作预处理步骤.这里以处理自然图像为例作解释. 1.计算协方差矩阵: 按照通常约束,x为特征变量,上边表示样本数目,下标表示特征数目.这里样本数为m. xRot = zeros(size(x)); sigma=x*x'/size(x,2); %sigma为协方差矩阵 [U,S,V]=svd(sigma); %U为特征向量,X为特征值,V为U的转置
MATLAB曲面插值及交叉验证
在离散数据的基础上补插连续函数,使得这条连续曲线通过全部给定的离散数据点.插值是离散函数逼近的重要方法,利用它可通过函数在有限个点处的取值状况,估算出函数在其他点处的近似值.曲面插值是对三维数据进行离散逼近的方法,MATLAB中的曲面插值函数有Triscatteredinterp,interp2,griddata等.我们以griddata为例讲解曲面插值及其交叉验证的过程. 一. gridata曲面插值 gridata不仅可以对三维曲面进行插值,还能对四维的超平面进行插值.griddata的调
kmeans算法实践
这几天学习了无监督学习聚类算法Kmeans,这是聚类中非常简单的一个算法,它的算法思想与监督学习算法KNN(K近邻算法)的理论基础一样都是利用了节点之间的距离度量,不同之处在于KNN是利用了有标签的数据进行分类,而Kmeans则是将无标签的数据聚簇成为一类.接下来主要是我对<机器学习实战>算法示例的代码实现和理解. 首先叙述下算法项目<对地图上的俱乐部进行聚类>的要求:朋友Drew希望让我们带她去城里庆祝生日,由于其他一些朋友也会过来,所以需要提供一个大家都可行的计划,Drew给出
opencv_haar分类器的训练
本文为作者原创,未经允许不得转载:原文由作者发表在博客园: http://www.cnblogs.com/panxiaochun/p/5345412.html 因为工作的原因,本人需要用到分类器来检测目标,所以需要训练自己的分类器 在这里我就简单的说下步骤和注意事项. HaarTraining步骤 1.正负样本处理 正样本处理需要对正样本进行归一化处理,一般情况下可以用Photoshop对图像进行尺寸统一处理,比如都是20*20或者24*24,其中其它尺寸比如240*15也可以做成样本的,不要求
机器学习实战(一)kNN
$k$-近邻算法(kNN)的工作原理:存在一个训练样本集,样本集中的每个数据都存在标签,即我们知道样本集中每一数据与所属分类的对于关系.输入没有标签的新数据后,将新数据的每一个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似数据(最近邻)的分类标签.一般来说,我们只选择样本数据集中前 $k$ 个最相似的数据,这就是$k$-近邻算法中$k$的出处,通常$k$是不大于20的整数.最后,选择$k$个最相似的数据中出现次数最多的分类,作为新数据的分类. 1. Putting the
第1讲 Redis部署与基本操作
目录 一.简介 二.安装 1.默认安装位置 2.指定安装位置 3.安装的可执行文件的作用 三.启动与关闭 四.配置文件 五.Redis的数据类型 1. 共计5种类型 2. String(子串类型) 3. hashs类型 4. list类型(双向链表结构) 5. sets类型和操作 一.简介 redis是一个key-value存储系统. 和Memcached类似,它支持存储的value类型相对更多, 包括string(字符串).list(链表).set(集合)和zset(有序集合). 这些数据类型
Deep Learning 16:用自编码器对数据进行降维_读论文“Reducing the Dimensionality of Data with Neural Networks”的笔记
前言 论文“Reducing the Dimensionality of Data with Neural Networks”是深度学习鼻祖hinton于2006年发表于<SCIENCE >的论文,也是这篇论文揭开了深度学习的序幕. 笔记 摘要:高维数据可以通过一个多层神经网络把它编码成一个低维数据,从而重建这个高维数据,其中这个神经网络的中间层神经元数是较少的,可把这个神经网络叫做自动编码网络或自编码器(autoencoder).梯度下降法可用来微调这个自动编码器的权值,但是只有在初始化权值
Deep Learning 13_深度学习UFLDL教程:Independent Component Analysis_Exercise(斯坦福大学深度学习教程)
前言 理论知识:UFLDL教程.Deep learning:三十三(ICA模型).Deep learning:三十九(ICA模型练习) 实验环境:win7, matlab2015b,16G内存,2T机械硬盘 难点:本实验难点在于运行时间比较长,跑一次都快一天了,并且我还要验证各种代价函数的对错,所以跑了很多次. 实验内容:Exercise:Independent Component Analysis.从数据库Sampled 8x8 patches from the STL-10 dataset
DeepLearning之路(三)MLP
DeepLearning tutorial(3)MLP多层感知机原理简介+代码详解 @author:wepon @blog:http://blog.csdn.net/u012162613/article/details/43221829 本文介绍多层感知机算法,特别是详细解读其代码实现,基于Python theano,代码来自:Multilayer Perceptron,如果你想详细了解多层感知机算法,可以参考:UFLDL教程,或者参考本文第一部分的算法简介. 经详细注释的代码:放在我的gith
DeepLearning之路(一)逻辑回归
逻辑回归 1. 总述 逻辑回归来源于回归分析,用来解决分类问题,即预测值变为较少数量的离散值. 2. 基本概念 回归分析(Regression Analysis):存在一堆观测资料,希望获得数据内在分布规律.单个样本表示成二维或多维向量,包含一个因变量Y和一个或多个自变量X.回归分析主要研究当自变量变化时,因变量如何变化,数学表示成Y=f(X),其中函数f称为回归函数(regression function).回归分析最终目的是找到最能代表已观测数据的回归函数. 分类:因变量Y为有限离散集,
Python 手写数字识别-knn算法应用
在上一篇博文中,我们对KNN算法思想及流程有了初步的了解,KNN是采用测量不同特征值之间的距离方法进行分类,也就是说对于每个样本数据,需要和训练集中的所有数据进行欧氏距离计算.这里简述KNN算法的特点: 优点:精度高,对异常值不敏感,无数据输入假定 缺点:计算复杂度高,空间复杂度高 适用数据范围:数值型和标称型(具有有穷多个不同值,值之间无序) knn算法代码: #-*- coding: utf-8 -*- from numpy import * import operatorimport
【原/转】opencv的级联分类器训练与分类全程记录
众所周知,opencv下有自带的供人脸识别以及行人检测的分类器,也就是说已经有现成的xml文件供你用.如果我们不做人脸识别或者行人检测,而是想做点其他的目标检测该怎么做呢?答案自然是自己训练一个特定的训练器.opencv里面比较常用的分类器有svm以及级联分类器,svm的训练以及分类很简单,这里不再赘述,这里谈谈级联分类器的训练.级联分类器可是好东西,opencv已经封装了多尺度检测方法(multiScaleDetector)以及绘制外接矩形的方法,这两个方法为目标检测提供了非常大的便利性.以下
LibSVM使用指南
LibSVM使用指南 一. SVM简介 在进行下面的内容时我们认为你已经具备了数据挖掘的基础知识. SVM是新近出现的强大的数据挖掘工具,它在文本分类.手写文字识别.图像分类.生物序列分析等实际应用中表现出非常好的性能.SVM属于监督学习算法,样本以属性向量的形式提供,所以输入空间是Rn的子集. 如图1所示,SVM的目标是找到两个间距尽可能大的边界平面来把样本本点分开,以”最小化泛化误差“,即对新的样本点进行分类预测时,出错的几率最小.落在边界平面上的点称为支持向量.Vapnik证明如果
PCV 学习笔记-ch1 主成分分析实现
模块名称:pca.py PCA原理与紧致技巧原理待补... #-*-coding:UTF-8-*- ''' Created on 2015年3月2日 @author: Ayumi Phoenix ch01 p-14 图像的主成分分析 ''' from PIL import Image import numpy def pca(X): """主成分分析: 输入:矩阵X 每一行为一条训练数据 返回:投影矩阵(按照维度重要性排序),方差,和均值"""
热门专题
disassembly imm命令
post方式通过什么获取参数
手机无法连接到recapctha
qt获取xls数据报错
ubuntu 编译安装redis5.0.5
curl 表单提交命令
stm32的spi收发 怎么判断成功和失败
mysql如何保留2位小数最后一位是0
自定义错误设置禁止远程查看怎么办
控制字符lrm是什么
vscode go 无法解析符号
sql case 函数是什么意思
页面侧边栏控制展开和收缩
屏蔽更新11.4.1
用面shp给栅格数据做分割
软件只允许数据线adb连接
sql server数据库排序规则 binary
Thinkphp 5.0 多模块
html密码变成星号
mybatis interceptor 监控耗时